Molecular Study of Varicella zoster virus in Cerebrospinal Fluid from Stroke Patients of Thi-Qar province
- Authors: Salim Z.F.1,2, Hamad B.J.1
-
Affiliations:
- University of Thi-Qar
- Ministry of Health, Thi-Qar Health Directorate
- Issue: Vol 69, No 4 (2024)
- Pages: 341-348
- Section: ORIGINAL RESEARCH
- URL: https://journals.rcsi.science/0507-4088/article/view/265986
- DOI: https://doi.org/10.36233/0507-4088-245
- EDN: https://elibrary.ru/ovtgzm
- ID: 265986
Cite item
Full Text
Abstract
Introduction: Varicella zoster virus (VZV) is a type of alpha-herpesvirus that specifically targets the nervous system. The initial infection, typically occurring during childhood, results in varicella (commonly known as chickenpox), after which the virus enters a dormant state in cranial nerve ganglia, dorsal root ganglia, and autonomic ganglia throughout the entire neuroaxis.
Aim of the study: Molecular and genetic studies of viruses are an important tool for virus development and identifying viral treatments to combat the diseases. The aim of the study was to determine the whole ORF4 sequence of the local VZV strains for phylogenetic analysis to determine the variability in the viral sequence.
Material and methods: Ten samples of VZV DNA were subjected to the sequencing of the whole ORF4 region following identification using the PCR method.
Results: Sequences from five samples have been successfully analyzed. All clinical strains were discovered to possess a genome with a length of 124,884 base pairs. The sequences exhibited the occurrence of two distinct mutations, one being a transversion and the other a transition, with the latter resulting in an alteration of the amino acid. A phylogenetic tree was constructed using the maximum likelihood method based on the sequences of five nucleotide sequences from clinical samples and nine reference VZV strains. The tree displayed the evolutionary distances between these sequences. The analysis of the phylogenetic tree revealed the presence of five primary clades, with four of them originating from India (isolates S1, S2, S4, S5), while S3 exhibited similarity to a strain from the United Kingdom.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Zinah Fadhil Salim
University of Thi-Qar; Ministry of Health, Thi-Qar Health Directorate
Author for correspondence.
Email: Zeena.salim.ph@utq.edu.iq
ORCID iD: 0009-0007-5565-502X
Master Student, lecturer of Department of Biology, College of Science
Iraq, Thi-Qar, 64001; NasiriyahBushra Jabbar Hamad
University of Thi-Qar
Email: bushra.jh.bio@sci.utq.edu.iq
ORCID iD: 0000-0002-5129-7700
Assistant Professor, lecturer of Department of Biology, College of Science
Russian Federation, Thi-Qar, 64001References
- Kennedy P.G., Montague P. Variable gene expression in human ganglia latently infected with varicella-zoster virus. Viruses. 2022; 14(6): 1250. https://doi.org/10.3390/v14061250
- Rashad I. Estimation of cytokine level IL-4, IL-12, IL-17 and some immune features among patients with Herpes zoster in Thi-Qar Province/Southern Iraq. Univ. Thi-Qar J. Sci. 2023; 10(1): 87–90. https://doi.org/10.32792/utq/utjsci/v10i1.943
- Nasser H.A., Shallal M.J., Naif A., Kadhim K.A. Detection of shingles and correlation with gender, weather and residency. Biochem. Cell. Arch. 2022; 22(1): 835.
- Heinz J.L., Swagemakers S.M., von Hofsten J., Helleberg M., Thomsen M.M., De Keukeleere K., et al. Whole exome sequencing of patients with varicella-zoster virus and herpes simplex virus induced acute retinal necrosis reveals rare disease-associated genetic variants. Front. Mol. Neurosci. 2023; 16: 1253040. https://doi.org/10.3389/fnmol.2023.1253040
- Almarjan M., Al-Hmudi H.A, Habib H.N. Holegenome sequences of local varicella-zoster virus (VZV) strains of Basrah city/Iraq. Turk. J. Physiother. Rehabil. 2021; 32(3): 16094–103.
- Pormohammad A., Goudarzi H., Eslami G., Falah F., Taheri F., Ghadiri N., et al. Epidemiology of herpes simplex and varicella zoster virus in cerebrospinal fluid of patients suffering from meningitis in Iran. New Microbes New Infect. 2020; 36: 100688. https://doi.org/10.1016/j.nmni.2020.100688
- Marais G., Naidoo M., McMullen K., Stanley A., Bryer A., van der Westhuizen D., et al. Varicella-zoster virus reactivation is frequently detected in HIV-infected individuals presenting with stroke. J. Med. Virol. 2022; 94(6): 2675–83. https://doi.org/10.1002/jmv.27651
- Lu P., Cui L., Zhang X. Stroke risk after varicella-zoster virus infection: a systematic review and meta-analysis. J. Neurovirol. 2023; 29(4): 449–59. https://doi.org/10.1007/s13365-023-01144-0
- Kuriakose D., Xiao Z. Pathophysiology and treatment of stroke: present status and future perspectives. Int. J. Mol. Sci. 2020; 21(20): 7609. https://doi.org/10.3390/ijms21207609
- Kawada J.I. Neurological disorders associated with human alphaherpesviruses. Adv. Exp. Med. Biol. 2018; 1045: 85–102. https://doi.org/10.1007/978-981-10-7230-7_5
- Wang T., Shen H., Deng H., Pan H., He Q., Ni H., et al. Quantitative proteomic analysis of human plasma using tandem mass tags to identify novel biomarkers for herpes zoster. J. Proteomics. 2020; 225: 103879. https://doi.org/10.1016/j.jprot.2020.103879
- Grahn A., Studahl M. Varicella-zoster virus infections of the central nervous system – Prognosis, diagnostics and treatment. J. Infect. 2015; 71(3): 281–93. https://doi.org/10.1016/j.jinf.2015.06.004
- Stránská R., Schuurman R., de Vos M., van Loon A.M. Routine use of a highly automated and internally controlled real-time PCR assay for the diagnosis of herpes simplex and varicella-zoster virus infections. J. Clin. Virol. 2004; 30(1): 39–44. https://doi.org/10.1016/j.jcv.2003.08.006
- Hieran A., Albadry B.J. A Human CCL3L1 gene expression in blood donors infected with HIV-1. Univ. Thi-Qar J. Sci. 2023; 10(1): 181–4. https://doi.org/10.32792/utq/utjsci/v10i1.1060
- Hong Y.J., Lim M.S., Hwang S.M., Kim T.S., Park K.U., Song J., et al. Detection of herpes simplex and varicella-zoster virus in clinical specimens by multiplex real-time PCR and melting curve analysis. Biomed. Res. Int. 2014; 2014: 261947. https://doi.org/10.1155/2014/261947
- Peters G.A., Tyler S.D., Grose C., Severini A., Gray M.J., Upton C., et al. A full-genome phylogenetic analysis of varicella-zoster virus reveals a novel origin of replication-based genotyping scheme and evidence of recombination between major circulating clades. J. Virol. 2006; 80(19): 9850–60. https://doi.org/10.1128/jvi.00715-06
- Loparev V.N., Gonzalez A., Deleon-Carnes M., Tipples G., Fickenscher H., Torfason E.G., et al. Global identification of three major genotypes of varicella-zoster virus: longitudinal clustering and strategies for genotyping. J. Virol. 2004; 78(15): 8349–58. https://doi.org/10.1128/jvi.78.15.8349-8358.2004
- Helmuth I.G., Mølbak K., Uldall P.V., Poulsen A. Post-varicella Arterial Ischemic Stroke in Denmark 2010 to 2016. Pediatr. Neurol. 2018; 80: 42–50. https://doi.org/10.1016/j.pediatrneurol.2017.11.018
- Tung Y.C., Tu H.P., Wu M.K., Kuo K.L., Su Y.F., Lu Y.Y., et al. Higher risk of herpes zoster in stroke patients. PLoS One. 2020; 15(2): e0228409. https://doi.org/10.1371/journal.pone.0228409
- Schmidt S.A.J., Langan S.M., Pedersen H.S., Schønheyder H.C., Thomas S.L., Smeeth L., et al. Mood disorders and risk of herpes zoster in 2 population-based case-control studies in Denmark and the United Kingdom. Am. J. Epidemiol. 2018; 187(5): 1019–28. https://doi.org/10.1093/aje/kwx338
- Sundström K., Weibull C.E., Söderberg-Löfdal K., Bergström T., Sparén P., Arnheim-Dahlström L. Incidence of herpes zoster and associated events including stroke – a population-based cohort study. BMC Infect. Dis. 2015; 15: 488. https://doi.org/10.1186/s12879-015-1170-y
- Jih J.S., Chen Y.J., Lin M.W., Chen Y.C., Chen T.J., Huang Y.L., et al. Epidemiological features and costs of herpes zoster in Taiwan: a national study 2000 to 2006. Acta Derm. Venereol. 2009; 89(6): 612–6. https://doi.org/10.2340/00015555-0729
- Liesz A., Dalpke A., Mracsko E., Antoine D.J., Roth S., Zhou W., et al. DAMP signaling is a key pathway inducing immune modulation after brain injury. J. Neurosci. 2015; 35(2): 583–98. https://doi.org/10.1523/jneurosci.2439-14.2015
- Liu J., Wang M., Gan L., Yang S., Chen J. Genotyping of clinical varicella-zoster virus isolates collected in China. J. Clin. Microbiol. 2009; 47(5): 1418–23. https://doi.org/10.1128/jcm.01806-08
- Sato B., Sommer M., Ito H., Arvin A.M. Requirement of varicella-zoster virus immediate-early 4 protein for viral replication. J. Virol. 2003; 77(22): 12369–72. https://doi.org/10.1128/jvi.77.22.12369-12372.2003
- Tang S., Patel A., Krause P.R. Herpes simplex virus ICP27 regulates alternative pre-mRNA polyadenylation and splicing in a sequence-dependent manner. Proc. Natl Acad. Sci. USA. 2016; 113(43): 12256–61. https://doi.org/10.1073/pnas.1609695113
- Rutkowski A.J., Erhard F., L’Hernault A., Bonfert T., Schilhabel M., Crump C., et al. Widespread disruption of host transcription termination in HSV-1 infection. Nat. Commun. 2015; 6: 7126. https://doi.org/10.1038/ncomms8126
- Kennedy P.G.E., Mogensen T.H., Cohrs R.J. Recent issues in varicella-zoster virus latency. Viruses. 2021; 13(10): 2018. https://doi.org/10.3390/v13102018
- Davison A.J. In: Arvin A.M., Gershon A.A., ed. Varicella-Zoster Virus. Cambridge: Cambridge University Press; 2000; 25–50. https://doi.org/10.1017/CBO9780511601194
- Al-Khafaji Z.A., Mahmood T.A., Alhuchaimi S.N. Molecular study of varicella-zoster virus infection among individuals in Najaf province/Iraq. Int. J. ChemTech Res. 2017; 10(2): 683–91.
Supplementary files
