Spatio-temporal clustering of African swine fever virus (Asfarviridae: Asfivirus) circulating in the Kaliningrad region based on three genome markers

Cover Page

Cite item

Abstract

Introduction. The rapid spread of African swine fever in the Kaliningrad region makes it necessary to use the methods of molecular epidemiology to determine the dynamics and direction of ASF spread in this region of Russia.

The aim of the study was to determine single nucleotide polymorphisms within molecular markers K145R, O174L and MGF 505-5R of ASFVs isolated in Kaliningrad region and to study the circulating of the pathogen in European countries by subgenotyping and spatio-temporal clustering analysis.

Materials and methods. Blood samples from living domestic pigs and organs from dead domestic pigs and wild boars, collected in the Kaliningrad region between 2017 and 2022 were used. Virus isolation was carried out in porcine bone-marrow primary cell culture. Amplicons of genome markers were amplified by PCR with electrophoretic detection and subsequent extraction of fragments from agarose gel. Sequencing was performed using the Sanger method.

Results. The circulation of two genetic clusters of ASFV isolates on the territory of the Kaliningrad has been established: epidemic (K145R-III, MGF 505-5R-II, O174L-I – 94.3% of the studied isolates) and sporadic (K145R-II, MGF 505-5R-II, O174L-I – 5.7%).

Conclusion. The broaden molecular genetic surveillance of ASFV isolates based on sequencing of genome markers is necessary in the countries of the Eurasian continent to perform a more detailed analysis of ASF spread between countries and within regions.

About the authors

Roman S. Chernyshev

Federal Centre for Animal Health (ARRIAH)

Email: chernishev_rs@arriah.ru
ORCID iD: 0000-0003-3604-7161

Postgraduate Student, Reference Laboratory

Russian Federation, Vladimir

Alexey S. Igolkin

Federal Centre for Animal Health (ARRIAH)

Email: igolkin_as@arriah.ru
ORCID iD: 0000-0002-5438-8026

Head of Reference Laboratory

Russian Federation, Vladimir

Andrey R. Shotin

Federal Center for Animal Health (ARRIAH)

Email: shotin@arriah.ru
ORCID iD: 0000-0001-9884-1841

Researcher, Reference Laboratory

Russian Federation, Vladimir

Nikolay G. Zinyakov

Federal Centre for Animal Health (ARRIAH)

Email: zinyakov@arriah.ru
ORCID iD: 0000-0002-3015-5594

Senior Researcher, Reference Laboratory for Avian Influenza

Russian Federation, Vladimir

Ivan S. Kolbin

Federal Center for Animal Health (ARRIAH)

Email: kolbin@arriah.ru
ORCID iD: 0000-0003-4692-1297

Postgraduate Student, Reference Laboratory

Russian Federation, Vladimir

Anastasia S. Sadchikova

Federal Centre for Animal Health (ARRIAH)

Email: sadchikova@arriah.ru
ORCID iD: 0009-0001-0801-2394

Postgraduate Student, Reference Laboratory

Russian Federation, Vladimir

Ivan A. Lavrentiev

Federal Center for Animal Health (ARRIAH)

Email: lavrentev@arriah.ru
ORCID iD: 0009-0003-0552-3812

Postgraduate Student, Reference Laboratory

Russian Federation, Vladimir

Konstantin N. Gruzdev

Federal Center for Animal Health (ARRIAH)

Email: gruzdev@arriah.ru
ORCID iD: 0000-0003-3159-1969

D. Sc. (Biology), Professor, Chief Researcher of the Information and Analytical Center

Russian Federation, Vladimir

Ali Mazloum

Federal Center for Animal Health (ARRIAH)

Author for correspondence.
Email: mazlum@arriah.ru
ORCID iD: 0000-0002-5982-8393

Senior Researcher, Reference Laboratory

Russian Federation, Vladimir

References

  1. Gallardo C., Casado N., Soler A., Djadjovski I., Krivko L., Madueño E., et al. A multi gene-approach genotyping method identifies 24 genetic clusters within the genotype II-European African swine fever viruses circulating from 2007 to 2022. Front. Vet. Sci. 2023; (10): 1112850. DOI: https://doi.org/10.3389/fvets.2023.1112850
  2. Mazloum A., van Schalkwyk A., Chernyshev R., Igolkin A., Heath L., Sprygin A. A guide to molecular characterization of genotype II African swine fever virus: essential and alternative genome markers. Microorganisms. 2023; 11(3): 642. DOI: https://doi.org/10.3390/microorganisms11030642
  3. Bastos A.D., Penrith M.L., Crucière C., Edrich J.L., Hutchings G., Roger F., et al. Genotyping field strains of African swine fever virus by partial p72 gene characterisation. Arch. Virol. 2003; 148(4): 693–706. DOI: https://doi.org/10.1007/s00705-002-0946-8.
  4. Achenbach J.E., Gallardo C., Nieto-Pelegrín E., Rivera-Arroyo B., Degefa-Negi T., Arias M., et al. Identification of a new genotype of African swine fever virus in domestic pigs from Ethiopia. Transbound. Emerg. Dis. 2017; 64(5): 1393–404. DOI: https://doi.org/10.1111/tbed.12511
  5. Fiori M.S., Sanna D., Scarpa F., Floris M., Di Nardo A., Ferretti L., et al. A deeper insight into evolutionary patterns and phylogenetic history of ASFV epidemics in Sardinia (Italy) through extensive genomic sequencing. Viruses. 2021; 13(10): 1994. DOI: https://doi.org/10.3390/v13101994
  6. Sun E., Huang L., Zhang X., Zhang J., Shen D., Zhang Z., et al. Genotype I African swine fever viruses emerged in domestic pigs in China and caused chronic infection. Emerg. Microbes Infect. 2021; 10(1): 2183–93. DOI: https://doi.org/10.1080/22221751.2021.1999779
  7. Zhao D., Sun E., Huang L., Ding L., Zhu Y., Zhang J., et al. Highly lethal genotype I and II recombinant African swine fever viruses detected in pigs. Nat. Commun. 2023; 14(1): 3096. DOI: https://doi.org/10.1038/s41467-023-38868-w
  8. World Organisation for Animal Health. World Animal Health Information System. Report (2023). Available at: https://wahis.woah.org/#/dashboards/qd-dashboard
  9. Śmietanka K., Woźniakowski G., Kozak E., Niemczuk K., Frączyk M., Bocian Ł., et al. African Swine Fever Epidemic, Poland, 2014-2015. Emerg. Infect. Dis. 2016; 22(7): 1201–7. DOI: https://doi.org/10.3201/eid2207.151708
  10. Mazloum A., Shevchenko I.V., Igolkin A.S., Shotin A.R. Spread of African swine fever on the territory of the Kaliningrad region. Veterinariya Kubani. 2022; (1): 14–8. DOI: https://doi.org/10.33861/2071-8020-2022-1-14-18 EDN: https://elibrary.ru/dbdygf (in Russian)
  11. Mazloum A., van Schalkwyk A., Shotin A., Zinyakov N., Igolkin A., Chernishev R., et al. Whole-genome sequencing of African swine fever virus from wild boars in the Kaliningrad region reveals unique and distinguishing genomic mutations. Front. Vet. Sci. 2023; 9: 1019808. https://doi.org/10.3389/fvets.2022.1019808
  12. Puzankova O., Gavrilova V., Chernyshev R., Kolbin I., Igolkin A., Sprygin A., et al. Novel protocol for the preparation of porcine bone marrow primary cell culture for African swine fever virus isolation. Methods Protoc. 2023; 6(5): 73. DOI: https://doi.org/10.3390/mps6050073
  13. Chernyshev R.S., Sidorenkova M.S., Sadchikova A.S., Igolkin A.S., Mazloum A. Development of a PCR protocol with electrophoretic detection to amplify marker fragments of the genome of ASFV isolates. In: Proceedings of the XI International Scientific and Practical Conference «Molecular Diagnosis 2023». Moscow; 2023: 57–8. (in Russian)
  14. Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018; 35(6): 1547–9. DOI: https://doi.org/10.1093/molbev/msy096
  15. Shotin A.R., Igolkin A.S., Mazlum A., Shevchenko I.V., Aronova E.V., Gruzdev K.N. Biological properties of African swine fever virus ASFV/Kaliningrad 17/WB-13869. Sel’skokhozyaystvennaya biologiya. 2023; (4): 773–83. DOI: https://doi.org/10.15389/agrobiology.2023.4.773eng
  16. Vlasov M.E., Imatdinov A.R., Titov I.A., Morgunov S.Yu., Malogolovkin A.S., Balyshev V.M. Biological properties and molecular genetic characterization of African swine fever virus isolated in 2016-2017 in different regions of the Russian Federation. Rossiyskaya sel’skokhozyaystvennaya nauka. 2018; (4): 54–7. DOI: https://doi.org/10.31857/S250026270000536-4 EDN: https://elibrary.ru/yamjtn (in Russian)
  17. Gabriel C., Blome S., Malogolovkin A., Parilov S., Kolbasov D., Teifke J.P., et al. Characterization of African swine fever virus Caucasus isolate in European wild boars. Emerg. Infect. Dis. 2011; 17(12): 2342–5. DOI: https://doi.org/10.3201/eid1712.110430
  18. Zhang Y., Wang Q., Zhu Z., Wang S., Tu S., Zhang Y., et al. Tracing the origin of genotype II African swine fever virus in China by genomic epidemiology analysis. Transbound. Emerg. Dis. 2023; 4820809. DOI: https://doi.org/10.1155/2023/4820809
  19. Mazur-Panasiuk N., Woźniakowski G., Niemczuk K. The first complete genomic sequences of African swine fever virus isolated in Poland. Sci. Rep. 2019; 9(1): 4556. DOI: https://doi.org/10.1038/s41598-018-36823-0
  20. Kovalenko G., Ducluzeau A.L., Ishchenko L., Sushko M., Sapachova M., Rudova N., et al. Complete genome sequence of a virulent African swine fever virus from a domestic pig in Ukraine. Microbiol. Resour. Announc. 2019; 8(42): e00883-19. DOI: https://doi.org/10.1128/MRA.00883-19
  21. Mazur-Panasiuk N., Walczak M., Juszkiewicz M., Woźniakowski G. The spillover of African swine fever in Western Poland revealed its estimated origin on the basis of O174L, K145R, MGF 505-5R and IGR I73R/I329L genomic sequences. Viruses. 2020; 12(10): 1094. DOI: https://doi.org/10.3390/v12101094
  22. Mazur-Panasiuk N, Woźniakowski G. The unique genetic variation within the O174L gene of Polish strains of African swine fever virus facilitates tracking virus origin. Arch. Virol. 2019; 164(6): 1667–72. DOI: https://doi.org/10.1007/s00705-019-04224-x
  23. Redrejo-Rodríguez M., Rodríguez J.M., Suárez C., Salas J., Salas M.L. Involvement of the reparative DNA polymerase Pol X of African swine fever virus in the maintenance of viral genome stability in vivo. J. Virol. 2013; 87(17): 9780–7. DOI: https://doi.org/10.1128/JVI.01173-13
  24. Schulz K., Oļševskis E., Viltrop A., Masiulis M., Staubach C., Nurmoja I., et al. Eight Years of African Swine Fever in the Baltic States: Epidemiological Reflections. Pathogens. 2022; 11(6): 711. DOI: https://doi.org/10.3390/pathogens11060711
  25. Malogolovkin A., Yelsukova A., Gallardo C., Tsybanov S., Kolbasov D. Molecular characterization of African swine fever virus isolates originating from outbreaks in the Russian Federation between 2007 and 2011. Vet. Microbiol. 2012; 158(3-4(: 415–9. DOI: https://doi.org/10.1016/j.vetmic.2012.03.002
  26. Mazloum A., van Schalkwyk A., Shotin A., Igolkin A., Shevchenko I., Gruzdev K.N., et al. Comparative analysis of full genome sequences of African swine fever virus isolates taken from wild boars in Russia in 2019. Pathogens. 2021; 10(5): 521. DOI: https://doi.org/10.3390/pathogens10050521
  27. Sauter-Louis C., Conraths F.J., Probst C., Blohm U., Schulz K., Sehl J., et al. African swine fever in wild boar in Europe – a review. Viruses. 2021; 13(9): 1717. DOI: https://doi.org/10.3390/v13091717
  28. Martínez-Avilés M., Iglesias I., De La Torre A. Evolution of the ASF infection stage in wild boar within the EU (2014–2018). Front. Vet. Sci. 2020; 7: 155. DOI: https://doi.org/10.3389/fvets.2020.00155.
  29. Pautienius A., Schulz K., Staubach C., Grigas J., Zagrabskaite R., Buitkuviene J., et al. African swine fever in the Lithuanian wild boar population in 2018: a snapshot. Virol. J. 2020; 17(1): 148. DOI: https://doi.org/10.1186/s12985-020-01422-x
  30. Pautienius A., Grigas J., Pileviciene S., Zagrabskaite R., Buitkuviene J., Pridotkas G., et al. Prevalence and spatiotemporal distribution of African swine fever in Lithuania, 2014–2017. Virol. J. 2018; 15(1): 177. DOI: https://doi.org/10.1186/s12985-018-1090-8
  31. Zakharova O.I., Blokhin A.A., Toropova N.N., Burova O.A., Yashin I.V., Korennoy F.I. Density of wild boar population and spread of African swine fever in the Russian Federation. Veterinariya segodnya. 2022; 11(2): 104–13. DOI: https://doi.org/10.29326/2304-196X-2022-11-2-104-113 EDN: https://elibrary.ru/dczmjk (in Russian)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Supplementary materials
Download (27KB)
3. Fig. 1. Spread of ASF in the Kaliningrad region (2017–2022)

Download (256KB)
4. Fig. 2. Multiple nucleotide alignment of genome marker fragments K145R (a), O174L (b) and MGF 505-5R (c) of ASFV isolates obtained by Sanger sequencing

Download (2MB)
5. Fig. 3. Distribution of ASFV genotype II variants in the territory of the Kaliningrad region and Eastern European countries based on genetic analysis of markers K145R (a), O174L (b) and MGF 505-5R (c)

Download (441KB)
6. Fig. 4. Neighbor-joining dendrogram showing phylogenomic of ASFV isolates from eastern Europe based on clustering analysis

Download (186KB)
7. Fig. 5. The pattern of territorial origin and circulation of ASFV in Kaliningrad region based on analyses of published and original data

Download (309KB)

Copyright (c) 2024 Chernyshev R.S., Igolkin A.S., Shotin A.R., Zinyakov N.G., Kolbin I.S., Sadchikova A.S., Lavrentiev I.A., Gruzdev K.N., Mazloum A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies