Comparative analysis of the taxonomic classification criteria for a number of groups of pathogenic DNA and RNA viruses based on genomic data

Cover Page

Cite item

Full Text

Abstract

The basis for criteria of the taxonomic classification of DNA and RNA viruses based on data of the genomic sequencing are viewed in this review. The genomic sequences of viruses, which have genome represented by double-stranded DNA (orthopoxviruses as example), positive-sense single-stranded RNA (alphaviruses and flaviviruses as example), non-segmented negative-sense single-stranded RNA (filoviruses as example), segmented negative-sense single-stranded RNA (arenaviruses and phleboviruses as example) are analyzed. The levels of genetic variability that determine the assignment of compared viruses to taxa of various orders are established for each group of viruses.

About the authors

Tatiana E. Sizikova

48th Central Scientific Research Institute of the Ministry of Defense of the Russian Federation

Email: 48cnii@mil.ru
ORCID iD: 0000-0002-1817-0126

PhD in Biology

Russian Federation, Sergiev Posad

Vitaliy N. Lebedev

48th Central Scientific Research Institute of the Ministry of Defense of the Russian Federation

Email: 48cnii@mil.ru
ORCID iD: 0000-0002-6552-4599

D. Sc. in Biology, Professor, Leading Researcher

Russian Federation, Sergiev Posad

Sergey V. Borisevich

48th Central Scientific Research Institute of the Ministry of Defense of the Russian Federation

Author for correspondence.
Email: 48cnii@mil.ru
ORCID iD: 0000-0002-6742-3919

D. Sc. in Biology, Professor, Academician of the Russian Academy of Sciences, Head of the Institute

Russian Federation, Sergiev Posad

References

  1. Lwoff A., Tournier P. The classification of viruses. Annu. Rev. Microbiol. 1966; 20: 45–74. DOI: https://doi.org/10.1146/annurev.mi.20.100166.000401
  2. Gintsburg A.L. Genodiagnosis of infectious diseases. Zhurnal mikrobiologii, epidemiologii i immunologii. 1998; 75(3): 86–95. EDN: https://elibrary.ru/mozshn (in Russian)
  3. Glick B.R., Pasternak J.J. Molecular Biotechnology. Principles and Applications of Recombinant DNA. Washington: American Society for Microbiology; 1994.
  4. Alekseeva A.E., Brusnigina N.F. Possibility and perspectives of massive parallel sequencing methods application in the diagnostics and epidemiological surveillance of infection diseases. Zhurnal MediAl’. 2014; (2): 6–28. EDN: https://elibrary.ru/sgxcgt (in Russian)
  5. Eisenstein M. Oxford Nanopore announcement sets sequencing sector abuzz. Nat. Biotechnol. 2012; 30(4): 295–6. DOI: https://doi.org/10.1038/nbt0412-295
  6. Kuznetsova I.V., Efremenko D.V., Kulichenko A.N. Applying principles of multi-factor genetic analysis of infectious disease agents in the work of the Rospotrebnadzor SAET during mass events. Problemy osobo opasnykh infektsii. 2018; (2): 68–72. DOI: https://doi.org/10.21055/0370-1069-2018-2-68-72 EDN: https://elibrary.ru/xrvhfz (in Russian)
  7. Behbehani A.M. The smallpox story: life and death of old disease. Microbiol. Rev. 1983; 47(4): 455–505. DOI: https://doi.org/10.1128/mr.47.4.455-509.1983
  8. Onishchenko G.G., Maksimov V.A., Vorob’ev A.A., Podkuiko V.N., Mel’nikov S.A. The topicality of return to smallpox vaccination: problems and prospects. Vestnik Rossiiskoi akademii meditsinskikh nauk. 2006; (7): 32–8. EDN: https://elibrary.ru/htvfyn (in Russian)
  9. Lofquist J.M., Weimert N.A., Hayney M.S. Smallpox: A review of clinical disease and vaccination. Am. J. Heath Syst. Pharm. 2003; 60(8): 749–56. DOI: https://doi.org/10.1093/ajhp/60.8.749
  10. Booss J., Davis L.E. Smallpox and smallpox vaccination. Neurological implications. Neurology. 2003; 60(8): 1241–5. DOI: https://doi.org/10.1212/01.wnl.0000063319.64515.6b
  11. Fenner F. Smallpox and Its Eradication. Geneva: WHO; 1988.
  12. Mikheev M.V., Feshchenko V.M., Shchelkunov S.N. Phylogenetic analysis of a chemokine-binding protein gene of orthopoxviruses. Molekulyarnaya genetika, mikrobiologiya i virusologiya. 2004; (1): 29–36. EDN: https://elibrary.ru/okkpev (in Russian)
  13. Safronov P.F., Ryazankina O.I., Petrov N.A., Totmenin A.V., Kolosova I.V., Shchelkunov S.N. Structural and functional organization of the genome of the cowpox virus, strain GRI-90. Report 2. Comparative analysis of the structure of the left species-specific region of the orthopoxvirus genome. Molekulyarnaya biologiya. 1999; 33(2): 291–302. (in Russian)
  14. Marennikova S.S., Shchelkunov S.N. Orthopoxviruses Pathogenic to Humans [Patogennye dlya cheloveka ortopoksvirusy]. Moscow; 1998. (in Russian)
  15. Safronov P.F., Totmenin A.V., Ryazankina O.I., Shchelkunov S.N. Structural and functional organization of the genome of the cowpox virus, strain GRI-90. Report 3. Functional characteristics of the left species-specific region of the orthopoxvirus genome. Molekulyarnaya biologiya. 1999; 33(2): 303–13. (in Russian)
  16. Emerson G.L., Li Y., Frace M.A., Olsen-Rasmussen M.A., Khristova M.L., Govil D., et al. The phylogenetics and ecology of the orthopoxviruses endemic to North America. PLoS One. 2009; 4(10): e7666. DOI: https://doi.org/10.1371/journal.pone.0007666
  17. Mauldin M.R., Antwerpen M., Emerson G.L., Li Y., Zoeller G., Carroll D.S., et al. Cowpox virus: what’s in a name? Viruses. 2017; 9(5): 101. DOI: https://doi.org/10.3390/v9050101
  18. Springer Y.P., Hsu C.H., Werle Z.R., Olson L.E., Cooper M.P., Castrodale L.J., et al. Novel orthopoxvirus infection in an Alaska resident. Clin. Infect. Dis. 2017; 64(12): 1737–41. DOI: https://doi.org/10.1093/cid/cix219
  19. Vora N.M., Li Y., Geleishvili M., Emerson G.L., Khmaladze E., Maghlakelidze G., et al. Human infection with a zoonotic orthopoxvirus in the country of Georgia. N. Engl. J. Med. 2015; 372(13): 1223–30. DOI: https://doi.org/10.1056/NEJMoa1407647
  20. Cardeti G., Gruber C.E.M., Eleni C., Carletti F., Castilletti C., Manna G., et al. Fatal outbreak in Tonkean macaques caused by possibly novel orthopoxvirus, Italy, January 2015. Emerg. Infect. Dis. 2017; 23(12): 1941–9. DOI: https://doi.org/10.3201/ eid2312.162098
  21. Gao J., Gigante C., Khmaladze E., Liu P., Tang S., Wilkins K., et al. Genome sequences of Akhmeta virus, an early divergent old world orthopoxvirus. Viruses. 2018; 10(5): 252. DOI: https://doi.org/10.3390/v10050252
  22. Lanave G., Dowgier G., Decaro N., Albanese F., Brogi E., Parisi A., et al. Novel orthopoxvirus and lethal disease in Cat, Italy. Emerg. Infect. Dis. 2018; 24(9): 1665–73. DOI: https://doi.org/10.3201/eid2409.171283
  23. Volchkov V.E., Volchkova V.A., Netesov S.V. Complete nucleotide sequence of the Eastern equine encephalomyelitis virus genome. Molekulyarnaya genetika, mikrobiologiya i virusologiya. 1991; (5): 8–15. (in Russian)
  24. Agular P., Adams A.P., Suarez V., Beingolea L., Vargas J., Manock S., et al. Genetic characterization of VEE virus from Bolivia, Ecuador and Peru: identification of a new subtype ID lineage. PLoS Negl. Trop. Dis. 2009; 3(9): e514. DOI: https://doi.org/10.1371/journal.pntd.0000514
  25. Chang G.J., Trent D.W. Nucleotide sequence of the genomic region encoding the 26S mRNA of EEE virus and the deduced aminoacid sequence of the viral structural proteins. J. Gen. Virol. 1987; 62(Pt. 8): 2129–42. DOI: https://doi.org/10.1099/0022-1317-68-8-2129.
  26. Weaver S.C., Pfeffer M., Marriott K., Kang W., Kinney R.M. Genetic evidence for the origins of Venezuelan equine encephalitis virus subtype IAB outbreaks. Am. J. Trop. Med. Hyg. 1999; 60(3): 441–8. DOI: https://doi.org/10.4269/ajtmh.1999.60.441
  27. Arrigo N.C., Adams A.P., Weaver S.C. Evolutionary patterns of eastern equine encephalitis virus in North versus South America suggest ecological differences and taxonomic revision. J. Virol. 2010; 84(2): 1014–25. DOI: https://doi.org/10.1128/JVI.01586-09
  28. Forrester N.L., Weitheim J.O., Dugan V.G., Auguste A.J., Lin D., Adams A.P., et al. Evolution and spread of VEE complex alphavirus in the Americas. PLoS Negl. Trop. Dis. 2017; 11(8): e0005693. DOI: https://doi.org/10.1371/journal.pntd.0005693
  29. Weaver S.C., Winegar R., Manger I.D., Forrester N.L. Alpaviruses: Population genetics and determinants emergence. Antiviral. Res. 2012; 94(3): 242–57. DOI: https://doi.org/10.1016/j.antiviral.2012.04.002
  30. Powers A.M., Huang H.V., Roehrig J.T., Strauss E.G., Weaver S.C. Togaviridae. In: King A.M.G., Adams M.J., Carstens E.B., Lefcovitz E.J., eds. Virus Taxonomy, Ninth Report of International Committee on taxonomy of Viruses. Oxford: Elsevier; 2011: 1103–10.
  31. Kinney R.M., Pfeffer M., Tsuchiya K.R., Chang G.J., Roehrig J.T. Nucleotide sequences of 26S mRNAs of the viruses, defining the VEE antigenic complex. Am. J. Trop. Med. Hyg. 1998; 59(6): 952–64. DOI: https://doi.org/10.4269/ajtmh.1998.59.952
  32. Quiroz E., Aguilar P.V., Cisneros J., Tesh R.B., Weaver S.C. Venezuelan equine encephalitis in Panama: fatal endemic disease and genetic diversity of etiologic viral strains. PLoS Negl. Trop. Dis. 2009; 3(6): e472. DOI: https://doi.org/10.1371/journal.pntd.0000472
  33. Brault A.C., Powers A.M., Weaver S.C. Vector infection determinants of Venezuelan equine encephalitis virus reside within the E2 envelope glycoprotein. J. Virol. 2002; 76(12): 6387–92. DOI: https://doi.org/10.1128/jvi.76.12.6387-6392.2002
  34. Brault A.C., Powers A.M., Holmes E.C., Woelk C.H., Weaver S.C. Positively-charged amino acid substitutions in the E2 envelope glycoprotein are associated with the emergence of VEE virus. J. Virol. 2002; 76(4): 1718–30. DOI: https://doi.org/10.1128/jvi.76.4.1718-1730.2002
  35. Greene I.P., Paessler S., Austgen L., Anischenko M., Brault A.C., Bowen R.A., et al. Envelope glycoprotein mutations mediate equine amplification and virulence of epizootic VEE virus. J. Virol. 2005; 79(14): 9128–33. DOI: https://doi.org/10.1128/JVI.79.14.9128-9133.2005
  36. Anischenko M., Bowen R.A. Paessler S., Austgen L., Greene I.P., Weaver S.C. Venezuelan encephalitis emergence mediated by a phylogenetically predicted virus mutation. Proc. Natl Acad. Sci. USA. 2006; 103(13): 4994–9. DOI: https://doi.org/10.1073/pnas.0509961103
  37. Agular P.V., Estrada-Franco J.C., Navarro-Lopes R., Ferro C., Haddow A.D., Weaver S.C. Endemic VEE in the Americas: Hidden under dengue umbrella. Future Virol. 2011; 6(6): 721–40. DOI: https://doi.org/10.2217/FVL.11.5
  38. Sharma A., Knollmann-Ritchel B. Current understanding of molecular basis of VEE virus pathogenesis and vaccine development. Viruses. 2019; 11(2): 164. DOI: https://doi.org/10.3390/v11020164
  39. Lednicky J.A., White S.K., Mavian C.N., Badry M.A., Telisma T., Salemi M., et al. Emergence of Madariaga virus as cause of acute febrile illness of children, Haiti 2015. PLoS Negl. Trop. Dis. 2019; 13(1): e006972. DOI: https://doi.org/10.1371/journal.pntd.0006972
  40. Edgar R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004; 32(5): 1792–7. DOI: https://doi.org/10.1093/nar/gkh340
  41. Barrows N.J., Campos R.K., Liao K., Prasanth K.R., Soto-Acosta R., Yeh S., et al. Biochemistry and molecular biology of flaviviruses. Chem. Rev. 2018; 118(8): 4448–82. DOI: https://doi.org/10.1021/acs.chemrev.7b00719
  42. Pierson T.C., Diamond M.S. Flaviviruses. In: Knipe D.M., Howley P.M., eds. Field virology. Philadelphia; 2013: 714–94.
  43. Karabatsos N. International Catalogue of Arboviruses: Including Certain other Viruses of Vertebrates. San Antonio: Published for the Subcommittee on Information Exchange of the American Committee on Arthropod-borne Viruses by the American Society of Tropical Medicine and Hygiene; 1985.
  44. Kuno G., Chang G.J., Tsuchiya K.R., Karabatsos N., Cropp C.B. Phylogeny of the genus Flavivirus. J. Virol. 1998; 72(1): 73–83. DOI: https://doi.org/10.1128/JVI.72.1.73-83.1998
  45. de Souza Lopes O., de Abreu Sacchetta L., Coimbra T.L., Pinto G.H., Glasser C.M. Emergence of a new arbovirus disease in Brazil. II. Epidemiologic studies on 1975 epidemic. Am. J. Epidemiol. 1978; 108(5): 394–401. DOI: https://doi.org/10.1093/oxfordjournals.aje.a112637
  46. Saivish M.V., da Costa V.G., da Silva R.A., Dutra da Silva G.C., Menezes G., Moreli M.L. Rocio Virus: An updated view on an elusive flavivirus. Viruses. 2021; 13(11): 2293. DOI: https://doi.org/10.3390/v13112293
  47. Mitchell C.J., Monath T.P., Cropp C.B. Experimental transmission of Rocio virus by mosquitoes. Am. J. Trop. Med. Hyg. 1981; 30(2): 465–72. DOI: https://doi.org/10.4269/ajtmh.1981.30.465
  48. Tiriba A.C., Miziara A.M., Lorenço R., da Costa R.B., Costa C.S., Pinto G.H. Primary human epidemic encephalitis induced by Arbovirus found at the sea shore south of the State of São Paulo. Clinical study in an emergency hospital. AMB Rev. Assoc. Med. Bras. 1976; 22(11): 415–20. (in Portuguese)
  49. Medeiros D.B., Nunes M.R., Vasconcelos P.F., Chang G.J., Kuno G. Complete genome characterization of Rocio virus (Flavivirus: Flaviviridae), a Brazilian flavivirus isolated from a fatal case of encephalitis during an epidemic in Sao Paulo state. J. Gen. Virol. 2007; 88(8): 2237-46. DOI: https://doi.org/10.1099/vir.0.82883-0
  50. Faye O., Freire C.C., Imarino A., Faye O., Oliveira J.V.C., Diallo M., et al. Molecular evolution of Zika virus during its emerging in the 20th century. PLoS Negl. Trop. Dis. 2014; 8(1): е2636. DOI: https://doi.org/10.1371/journal.pntd.0002636
  51. Kiley M.P., Bowen E.T., Eddy G.A., Isaacson M., Johnson K.M., McCormick J.B., et al. Filoviridae: A taxonomic home for Marburg and Ebola viruses? Intervirology. 1982; 18(1-2): 24–32. DOI: https://doi.org/10.1159/000149300
  52. Kuhn J.H., Becker S., Ebihara H., Geisbert T.W., Johnson K.M., Kawaoka Y., et al. Proposal for a revised taxonomy of the family Filoviridae: classification, names of taxa and viruses, and virus abbreviations. Arch. Virol. 2010; 155(12): 2083–103. DOI: https://doi.org/10.1007/s00705-010-0814-x
  53. Biedenkopf N., Bukreyev A., Chandran K., Di Paola N., Formenty P.B.H., Griffiths A., et al. Renaming of genera Ebolavirus and Marburgvirus to Orthoebolavirus and Orthomarburgvirus, respectively, and introduction of binomial species names within family Filoviridae. Arch. Virol. 2023; 168(8): 220. DOI: https://doi.org/10.1007/s00705-023-05834-2
  54. Kuhn J.H., Adachi T., Adhikari N.K.J., Arribas J.R., Bah I.E., Bausch D.G., et al. New filovirus disease classification and nomenclature. Nat. Rev. Microbiol. 2019; 17(5): 261–3. DOI: https://doi.org/10.1038/s41579-019-0187-4
  55. Le Guenno B., Formenty P., Wyers M., Gounon P., Walker F., Boesch C. Isolation and partial characterisation of a new strain of Ebola virus. Lancet. 1995; 345(8960): 1271–4. DOI: https://doi.org/10.1016/s0140-6736(95)90925-7
  56. Towner J.S., Sealy T.K., Khristova M.L., Albarino C.G., Conlan S., Reeder S.A., et al. Newly discovered Ebola virus associated with hemorrhagic fever outbreak in Uganda. PLoS Pathog. 2008; 4(11): e1000212. DOI: https://doi.org/10.1371/journal.ppat.1000212
  57. Miranda M.E.G., Miranda N.L.J. Reston ebolavirus in humans and animals in the Philippines: A review. J. Infect. Dis. 2011; 204(3): 757–60. DOI: https://doi.org/10.1093/infdis/jir296
  58. Goldstein T., Anthony S.J., Gbakima A., Bird B.H., Bangura J., Tremeau-Bravard A. The discovery of Bombali virus adds further support for bats as hosts of ebolaviruses. Nat. Microbiol. 2018; 3(10): 1084–9. DOI: https://doi.org/10.1038/s41564-018-0227-2
  59. de La Vega M.A., Stein D., Kobinger G.P. Ebolavirus evolution: past and present. PLoS Pathog. 2015; 11(11): e1005221. DOI: https://doi.org/10.1371/journal.ppat.1005221
  60. Towner J.S., Khristova M.L., Sealy T.K., Vincent M.J., Erickson B.R., Bawies D.A., et al. Marburg virus genomics and association with a large hemorrhagic fever outbreak in Angola. J. Virol. 2006; 80(13): 6497–516. DOI: https://doi.org/10.1128/JVI.00069-06
  61. Carroll S.A., Towner J.S., Sealy T.K., McMullan L.K., Khristova M.L., Burt F.J., et al. Molecular evolution of viruses of the family Filoviridae based on 97 whole-genome sequences. J. Virol. 2013; 87(5): 2608–16. DOI: https://doi.org/10.1128/jvi.03118-12
  62. He B., Feng Y., Zhang H., Xu L., Yang W., Zhang Y., et al. Filovirus RNA in fruit bats, China. Emerg. Infect. Dis. 2015; 21(9): 1675–7. DOI: https://doi.org/10.3201/eid2109.150260
  63. Negredo A., Palacios G., Vazquez-Moron S., Gonzales F., Dopazo H., Molero F., et al. Discovery of an Ebola-like filovirus in Europe. PLoS Pathog. 2011; 7(10): e1002304. DOI: https://doi.org/10.1371/journal.ppat.1002304
  64. Di Paola N., Sanchez-Lockhart M., Zeng X., Kuhn J.H., Palacios G. Viral genomics in Ebola virus research. Nat. Rev. Microbiol. 2020; 18(7): 365–78. DOI: https://doi.org/10.1038/s41579-020-0354-7
  65. Southern P.J. Arenaviridae: The viruses and their replication. In: Fields B.N., Knipe D.M., Howley P.M. Field’s Virology. Volume 1. Philadelphia: Lippincott-Raven Publishers; 1996: 1505–19.
  66. Hallam S.J., Koma T., Maruyama J., Paessler S. Review of Mammarenavirus Biology and Replication. Front. Microbiol. 2018; 9: 1751. DOI: https://doi.org/10.3389/fmicb.2018.01751
  67. Munning J.T., Forester N., Paesler S.J.T. Lassa virus isolates from Mali and Ivory Coast represent an emerging fifth lineage. Front. Microbiol. 2015; 6: 1037. DOI: https://doi.org/10.3389/fmicb.2015.01037
  68. Whitmer S.L.M., Strecker T. Cadar D., Dienes H.P., Faber K., Patel K., et al. New lineage of Lassa virus Togo 2016. Emerg. Infect. Dis. 2018; 24(3): 596–602. DOI: https://doi.org/10.3201/eid2403.171905
  69. Charrel R.N., Feldmann H., Fulhorst C.F., Khelifa R., de Chesse R., de Lambalerie X. Phylogeny of New World arenaviruses based on the complete coding sequences of the small genomic segment identified an evolutionary lineage produced by intrasegmental recombination. Biochem. Biophys. Res. Commun. 2002; 296(5): 1118–24. DOI: https://doi.org/10.1016/s0006-291x(02)02053-3
  70. Li A., Liu L., Wu W., Liu Y., Huang X., Li C., et al. Molecular evolution and genetic diversity analysis of SFTS virus based on next-generation sequencing. Biosaf. Health. 2021; 3(02): 105–15. DOI: https://doi.org/10.1016/j.bsheal.2021.02.002
  71. Ning Y.J., Feng K., Min Y.Q., Cao W.C., Wang M., Deng F., et al. Disruption of type I interferon signaling by the nonstructural protein of severe fever with thrombocytopenia syndrome virus via the hijacking of STAT2 and STAT1 into inclusion bodies. J. Virol. 2015; 89(8): 4227–36. DOI: https://doi.org/10.1128/JVI.00154-15
  72. Qu B., Qi X., Wu X., Liang M., Li C., Cardona C.J., et al. Supression of the interferon and NF-kB responses by severe fever with thrombocytopenia syndrome virus. J. Virol. 2012; 86(16): 8388–401. DOI: https://doi.org/10.1128/JVI.00612-12
  73. Huang X., Liu L., Du Y., Wu W., Wang H., Su J., et al. The evolutionary history and spatiotemporal dynamics of the fever, thrombocytopenia and leukocytopenia syndrome virus (FTLSV) in China. PLoS Negl. Trop. Dis. 2014; 8(10): e3237. DOI: https://doi.org/10.1371/journal.pntd.0003237
  74. Lam T.T., Liu W., Bowden T.A., Cui N., Zhuang L., Liu K., et al. Evolutionary and molecular analysis of the emergent severe fever with thrombocytopenia syndrome virus. Epidemics. 2013; 5(1): 1–10. DOI: https://doi.org/10.1016/j.epidem.2012.09.002
  75. Zhang Y.Z., Zhou D.J., Qin X.C., Tian J.H., Xiong Y., Wang J.B., et al. The ecology, genetic diversity, and phylogeny of Huaiyangshan virus in China. J. Virol. 2012; 86(5): 2864-8. DOI: https://doi.org/10.1128/JVI.06192-11
  76. Xu B., Liu L., Huang X., Ma H., Zhang Y., Du Y., et al. Metagenomic analysis of fever, thrombocytopenia and leucopenia syndrome (FTLS) in Henen province, China: Discovery of a new Bunyavirus. PLoS Patog. 2011; 7(11): e1002369. DOI: https://doi.org/10.1371/journal.ppat.1002369
  77. Liu L., Chen W., Yang Y., Jiang Y. Molecular evolution of fever, thrombocytopenia and leukocytopenia virus (FTLSV) based on whole-genome sequences. Infect. Genet. Evol. 2016; 39: 55-63. DOI: https://doi.org/10.1016/j.meegid.2015.12.022
  78. Lefkowitz E.J., Dempsey D.M., Hendrickson R.C., Orton R.J., Siddell S.G., Smith D.B. Virus taxonomy: the database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Res. 2018; 46(D1): D708–17. DOI: https://doi.org/10.1093/nar/gkx932

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure. The position of the Alaska virus, the Akhmat virus and cat poxvirus on the phylogenetic tree of the Old World orthopoxviruses

Download (379KB)

Copyright (c) 2024 Sizikova T.E., Lebedev V.N., Borisevich S.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies