Global genetic diversity of measles virus (Paramyxoviridae: Morbillivirus: Morbillivirus hominis): historical aspects and current state
- Authors: Rubalskaia T.S.1, Erokhov D.V.1, Zherdeva P.E.1, Mamaeva T.A.1, Tikhonova N.T.1
-
Affiliations:
- G.N. Gabrichevsky Moscow research institute of epidemiology and microbiology Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
- Issue: Vol 68, No 5 (2023)
- Pages: 361-371
- Section: REVIEWS
- URL: https://journals.rcsi.science/0507-4088/article/view/231856
- DOI: https://doi.org/10.36233/0507-4088-187
- EDN: https://elibrary.ru/bfzbei
- ID: 231856
Cite item
Abstract
Monitoring the circulation of the measles virus and studying its genetic diversity is an important component of the measles elimination program. A methodological approach to molecular genetic studies and their interpretation in the measles surveillance was developed in the early 2000s. During its development, clear areas of circulation of each genotype of the virus were identified, therefore, the determination of viruses’ genotypes was proposed to monitor circulation and identify transmission pathways. However, in the future, due to a significant decrease in the number of active genotypes, an approach based on sub-genotyping was proposed: determining not only the genotype of the virus, but also its genetic lineage/genetic variant. The Global Measles and Rubella Laboratory Network (GMRLN) systematically monitors the circulation of the measles virus at the sub-genotypic level, depositing the results in a specialized database MeaNS2. It is this database that is the most complete and reliable source of information about the genetic characteristic of measles viruses.
This review presents both historical information and the latest data on the global genetic diversity of the measles virus.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Tatiana S. Rubalskaia
G.N. Gabrichevsky Moscow research institute of epidemiology and microbiology Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
Author for correspondence.
Email: rubalskaia@gabrich.ru
ORCID iD: 0000-0003-0838-7353
head of applied immunochemistry laboratory G.N. Gabrichevsky, research institute of epidemiology and microbiology
Russian Federation, 125212, MoscowDenis V. Erokhov
G.N. Gabrichevsky Moscow research institute of epidemiology and microbiology Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
Email: erokhovdenis@gmail.com
ORCID iD: 0000-0001-7163-7840
Researcher of applied immunochemistry laboratory G.N. Gabrichevsky Moscow research institute of epidemiology and microbiology
Russian Federation, 125212, MoscowPolina E. Zherdeva
G.N. Gabrichevsky Moscow research institute of epidemiology and microbiology Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
Email: polya-zherdeva@mail.ru
ORCID iD: 0000-0002-7635-4353
junior researcher of applied immunochemistry laboratory G.N. Gabrichevsky Moscow research institute of epidemiology and microbiology
Russian Federation, 125212, MoscowTamara A. Mamaeva
G.N. Gabrichevsky Moscow research institute of epidemiology and microbiology Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
Email: 4522826@bk.ru
ORCID iD: 0000-0002-2320-1062
Ph.D. (Biol.), Lead researcher of applied immunochemistry laboratory G.N. Gabrichevsky, research institute of epidemiology and microbiology
Russian Federation, 125212, MoscowNina T. Tikhonova
G.N. Gabrichevsky Moscow research institute of epidemiology and microbiology Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
Email: tikhmail@mail.ru
ORCID iD: 0000-0002-8762-4355
Professor, Dr.Sci. (Biol.), Chief researcher of cytokines laboratory G.N. Gabrichevsky, research institute of epidemiology and microbiology
Russian Federation, 125212, MoscowReferences
- Measles: Vaccine Preventable Diseases Surveillance Standards. Available at: https://www.who.int/publications/m/item/vaccine-preventable-diseases-surveillance-standards-measles
- Mulders M.N., Rota P.A., Icenogle J.P., Brown K.E., Takeda M., Rey G.J., Ben Mamou M.C., Dosseh A.R., Byabamazima C.R., Ahmed H.J., Pattamadilok S., Zhang Y., Gacic-Dobo M., Strebel P.M., Goodson J.L. Global Measles and Rubella Laboratory Network Support for Elimination Goals, 2010–2015. MMWR Morb Mortal Wkly Rep. 2016 May 6; 65(17): 438–42. https://doi.org/10.15585/mmwr.mm6517a3
- Measles virus nomenclature update: 2012. Wkly Epidemiol Rec. 2012 Mar 2; 87(9): 73–81. English, French. Available at: https://www.who.int/publications/i/item/WER8709
- Expanded Programme on Immunization (EPI). Standardization of the nomenclature for describing the genetic characteristics of wild-type measles viruses. Wkly Epidemiol Rec. 1998 Aug 28; 73(35): 265–9. English, French. Available at: https://www.who.int/publications/i/item/WER7335
- The role of extended and whole genome sequencing for tracking transmission of measles and rubella viruses: report from the Global Measles and Rubella laboratory Network meeting, 2017. Weekly Epidemiological Record, 2018, 93(6): 55–59. Available at: https://www.who.int/publications/i/item/WER9306
- Kremer J.R., Fack F., Olinger C.M., Mulders M.N., Muller C.P. Measles virus genotyping by nucleotide-specific multiplex PCR. J Clin Microbiol. 2004 Jul; 42(7): 3017–22. https://doi.org/10.1128/JCM.42.7.3017-3022.2004
- Tran T., Kostecki R., Catton M., Druce J. Utility of a Stressed Single Nucleotide Polymorphism (SNP) Real-Time PCR Assay for Rapid Identification of Measles Vaccine Strains in Patient Samples. J Clin Microbiol. 2018 Jul 26; 56(8): e00360–18. https://doi.org/10.1128/JCM.00360-18
- Roy F., Mendoza L., Hiebert J., McNall R.J., Bankamp B., Connolly S., Lüdde A., Friedrich N., Mankertz A., Rota P.A., Severini A. Rapid Identification of Measles Virus Vaccine Genotype by Real-Time PCR. J Clin Microbiol. 2017 Mar; 55(3): 735–743. https://doi.org/10.1128/JCM.01879-16
- MeaNS2: Measles Virus Nucleotide Surveillance. Available at: https://who-gmrln.org/means2
- International Committee on Taxonomy of Viruses: ICTV. Official Taxonomic Resources. Available at: https://ictv.global/taxonomy/taxondetails?taxnode_id=202201616
- ViralZone: a knowledge resource to understand virus diversity. Hulo C, de Castro E, Masson P, Bougueleret L, Bairoch A, Xenarios I, Le Mercier P. Nucleic Acids Res. 2011 Jan; 39: D576–82. Available at: https://viralzone.expasy.org/
- de Swart R.L., Yüksel S., Osterhaus A.D. Relative contributions of measles virus hemagglutinin- and fusion protein-specific serum antibodies to virus neutralization. J Virol. 2005 Sep; 79(17): 11547–51. https://doi.org/10.1128/JVI.79.17.11547-11551.2005
- WHO immunological basis for immunization series: module 7: measles: update 2020. Available at: https://www.who.int/publications-detail-redirect/9789241516655
- Shu Y., Habchi J., Costanzo S., Padilla A., Brunel J., Gerlier D., Oglesbee M., Longhi S. Plasticity in structural and functional interactions between the phosphoprotein and nucleoprotein of measles virus. J Biol Chem. 2012 Apr 6; 287(15): 11951–67. https://doi.org/10.1074/jbc.M111.333088
- Riddell M.A., Rota J.S., Rota P.A. Review of the temporal and geographical distribution of measles virus genotypes in the prevaccine and postvaccine eras. Virol J. 2005 Nov 22; 2: 87. https://doi.org/10.1186/1743-422X-2-87
- Kühne M., Brown D.W., Jin L. Genetic variability of measles virus in acute and persistent infections. Infect Genet Evol. 2006 Jul; 6(4): 269–76. https://doi.org/10.1016/j.meegid.2005.08.003
- Nomenclature for describing the genetic characteristics of wild-type measles viruses (update). Wkly Epidemiol Rec. 2001 Aug 17; 76(33): 249–51. English, French. Available at: https://www.who.int/publications/i/item/WER7633
- Shulga S.V., Tsvirkun O.V., Tikhonova N.T., Chekhlyaeva T.S., Gerasimova A.G., Mamaeva T.A. et al. Methodological recommendations МР 3.1.2.0135–18. Genetic monitoring of the circulation of measles and rubella viruses. Мoscow; 2019. Available at: https://pdf.standartgost.ru/catalog/Data2/1/4293730/4293730377.pdf (In Russ.)
- Update of the nomenclature for describing the genetic characteristics of wild-type measles viruses: new genotypes and reference strains. Wkly Epidemiol Rec. 2003 Jul 4; 78(27): 229–32. English, French. Available at: https://www.who.int/publications/i/item/WER7827
- WHO. New genotype of measles virus and update on global distribution of measles genotypes. Wkly Epidemiol Rec. 2005 Oct 7; 80(40): 347–51. English, French. Available at: https://www.who.int/publications/i/item/WER8040
- Global distribution of measles and rubella genotypes--update. Wkly Epidemiol Rec. 2006 Dec 15; 81 (51/52): 474–9. English, French. Available at: https://www.who.int/publications/i/item/WER8151
- Genetic diversity of wild-type measles viruses and the global measles nucleotide surveillance database (MeaNS). Wkly Epidemiol Rec. 2015 Jul 24; 90(30): 373–80. English, French. Available at: https://www.who.int/publications/i/item/WER9030
- Ignatyev G.M, Atrasheuskaya Е.V., Sukhanova L.L. et al. Molecular genetic analysis of the strain Leningrad-16 used for the production of measles vaccine. Zhurnal Mikrobiologii, Epidemiologii, i Immunobiologii. 2020; 97(2): 182–189. https://doi.org/10.36233/0372-9311-2020-97-2-182-189 (In Russ.)
- Parks C.L., Lerch R.A., Walpita P., Wang H.P., Sidhu M.S., Udem S.A. Analysis of the noncoding regions of measles virus strains in the Edmonston vaccine lineage. J Virol. 2001 Jan; 75(2): 921–33. https://doi.org/10.1128/JVI.75.2.921-933.2001
- Parks C.L., Lerch R.A., Walpita P., Wang H.P., Sidhu M.S., Udem S.A. Comparison of predicted amino acid sequences of measles virus strains in the Edmonston vaccine lineage. J Virol. 2001 Jan; 75(2): 910–20. https://doi.org/10.1128/JVI.75.2.910-920.2001
- Waku-Kouomou D., Freymuth F., du Châtelet I.P., Wild T.F., Horvat B. Co-circulation of multiple measles virus genotypes during an epidemic in France in 2008. J Med Virol. 2010 May; 82(6): 1033–43. https://doi.org/10.1002/jmv.21766
- Mortamet G., Dina J., Freymuth F., Guillois B., Vabret A. Measles in France. Arch. Pediatr. 2012; 19(11): 1269–72. https://doi.org/10.1016/j.arcped.2012.08.006 (in French)
- Kouomou D.W., Nerrienet E., Mfoupouendoun J., Tene G., Whittle H., Wild T.F. Measles virus strains circulating in Central and West Africa: Geographical distribution of two B3 genotypes. J Med Virol. 2002 Nov; 68(3): 433–40. https://doi.org/10.1002/jmv.10222
- Haddad-Boubaker S., Rezq M., Smeo M.N., Ben Yahia A., Abudher A., Slim A., Ben Ghorbel M., Ahmed H., Rota P., Triki H. Genetic characterization of clade B measles viruses isolated in Tunisia and Libya 2002-2009 and a proposed new subtype within the B3 genotype. Virus Res. 2010 Nov; 153(2): 258–64. https://doi.org/10.1016/j.virusres.2010.08.011
- Takahashi M., Nakayama T., Kashiwagi Y., Takami T., Sonoda S., Yamanaka T., Ochiai H., Ihara T., Tajima T. Single genotype of measles virus is dominant whereas several genotypes of mumps virus are co-circulating. J Med Virol. 2000 Oct; 62(2): 278–85.
- Mosquera M.M., Ory F., Echevarría J.E. Measles virus genotype circulation in Spain after implementation of the national measles elimination plan 2001-2003. J Med Virol. 2005 Jan; 75(1): 137–46. https://doi.org/10.1002/jmv.20248
- de Swart R.L., Yüksel S., Langerijs C.N., Muller C.P., Osterhaus A. Depletion of measles virus glycoprotein-specific antibodies from human sera reveals genotype-specific neutralizing antibodies. J Gen Virol. 2009 Dec; 90(Pt 12): 2982–2989. https://doi.org/10.1099/vir.0.014944-0
- Santibanez S., Heider A., Gerike E., Agafonov A., Schreier E. Genotyping of measles virus isolates from central Europe and Russia. J Med Virol. 1999 Jul; 58(3): 313–20
- Lam T., Ranjan R., Newark K., Surana S., Bhangu N., Lazenbury A., et al. A recent surge of fulminant and early onset subacute sclerosing panencephalitis (SSPE) in the United Kingdom: An emergence in a time of measles. Eur. J. Paediatr. Neurol. 2021; 34: 4–49. https://doi.org/10.1016/j.ejpn.2021.07.006
- Junker A., Wozniak J., Voigt D., Scheidt U., Antel J., Wegner C., et al. Extensive subpial cortical demyelination is specific to multiple sclerosis. Brain Pathol. 2020; 30(3): 641–52. https://doi.org/10.1111/bpa.12813
- Jin L., Beard S., Hunjan R., Brown D.W., Miller E. Characterization of measles virus strains causing SSPE: a study of 11 cases. J Neurovirol. 2002 Aug; 8(4): 335–44. https://doi.org/ 10.1080/13550280290100752
- Riddell M.A., Moss W.J., Hauer D., Monze M., Griffin D.E. Slow clearance of measles virus RNA after acute infection. J Clin Virol. 2007 Aug; 39(4): 312–7. https://doi.org/10.1016/j.jcv.2007.05.006
- Cheng W.Y., Lee L., Rota P.A., Yang D.C. Molecular evolution of measles viruses circulated in Taiwan 1992-2008. Virol J. 2009 Dec 10; 6: 219. https://doi.org/10.1186/1743-422X-6-219
- Atrasheuskaya A.V., Kulak M.V., Neverov A.A., Rubin S., Ignatyev G.M. Measles cases in highly vaccinated population of Novosibirsk, Russia, 2000-2005. Vaccine. 2008 Apr 16; 26(17): 2111–8. https://doi.org/10.1016/j.vaccine.2008.02.028
- Riddell M.A., Rota J.S., Rota P.A. Review of the temporal and geographical distribution of measles virus genotypes in the prevaccine and postvaccine eras. Virol J. 2005 Nov 22; 2: 87. https://doi.org/10.1186/1743-422X-2-87
- Zhang Y., Ding Z., Wang H., Li L., Pang Y., Brown K.E., Xu S., Zhu Z., Rota P.A., Featherstone D., Xu W. New measles virus genotype associated with outbreak, China. Emerg Infect Dis. 2010 Jun; 16(6): 943–7. https://doi.org/10.3201/eid1606.100089
- Horm S.V., Dumas C., Svay S., Feldon K., Reynes J.M. Genetic characterization of wild-type measles viruses in Cambodia. Virus Res. 2003 Nov;97(1):31-7. doi: 10.1016/s0168-1702(03)00219-3
- Pattamadilok S., Incomserb P., Primsirikunawut A., Lukebua A., Rota P.A., Sawanpanyalert P. Genetic characterization of measles viruses that circulated in Thailand from 1998 to 2008. J Med Virol. 2012 May; 84(5): 804–13. https://doi.org/10.1002/jmv.23249
- Tipples G.A., Gray M., Garbutt M., Rota P.A. Canadian Measles Surveillance Program. Genotyping of measles virus in Canada: 1979-2002. J Infect Dis. 2004 May 1; 189 Suppl 1: S171–6. https://doi.org/10.1086/377716
- Kokotas S.N., Bolanaki E., Sgouras D., et al. Cocirculation of genotypes D4 and D6 in Greece during the 2005 to 2006 measles epidemic. Diagn Microbiol Infect Dis. 2008 Sep; 62(1): 58–66. https://doi.org/10.1016/j.diagmicrobio.2008.06.001. Epub 2008 Jul 14
- Shulga S.V., Tikhonova N.T., Naumova М.А. et al. Changes in the spectrum of circulating virus genotypes as an indicator of elimination of indigenous measles in Russia. Epidemiologiya i vakcinoprofilaktika. 2009; 4: 4–9. (In Russ.)
- Vaidya S.R., Chowdhury D.T. Measles virus genotypes circulating in India, 2011-2015. J Med Virol. 2017 May; 89(5): 753–758. https://doi.org/10.1002/jmv.24702
- Zhuravleva Y.N., Lugovcev V.Y., Voronina O.L. et al. Genetic analysis of wild strains of measles virus isolated in the European part of the Russian Federation. Voprosy virusologii. Вопросы вирусологии. 2003; 48(4): 29–35. (In Russ.)
- Santibanez S., Tischer A., Heider A., et al. Rapid replacement of endemic measles virus genotypes. J Gen Virol. 2002 Nov; 83(Pt 11): 2699–2708. https://doi.org/10.1099/0022-1317-83-11-2699
- Zhang Y., Zhu Z., Rota P.A., et al. Molecular epidemiology of measles viruses in China, 1995-2003. Virol J. 2007 Feb 5; 4: 14. https://doi.org/10.1186/1743-422X-4-14
- Cheng W.Y., Wang H.C., Wu H.S., et al. Measles surveillance in Taiwan, 2012-2014: Changing epidemiology, immune response, and circulating genotypes. J Med Virol. 2016 May; 88(5): 746–53. https://doi.org/10.1002/jmv.24392
- Kremer J.R., Nguyen G.H., Shulga S.V., et al. Genotyping of recent measles virus strains from Russia and Vietnam by nucleotide-specific multiplex PCR. J Med Virol. 2007 Jul; 79(7): 987–94. https://doi.org/10.1002/jmv.20827
- Rota P.A., Liffick S.L., Rota J.S., Katz R.S., Redd S., Papania M., Bellini W.J. Molecular epidemiology of measles viruses in the United States, 1997-2001. Emerg Infect Dis. 2002 Sep; 8(9): 902–8. https://doi.org/10.3201/eid0809.020206
- WHO EpiBrief: a report on the epidemiology of selected vaccine-preventable diseases in the European Region: No. 1/2022. Available at: https://www.who.int/europe/publications/i/item/WHO-EURO-2022-6771-46537-67504
- WHO EpiBrief: a report on the epidemiology of selected vaccine-preventable diseases in the European Region: No. 1/2023. Available at: https://www.who.int/europe/publications/i/item/WHO-EURO-2023-7691-47458-69761
- A monthly summary of the epidemiological data on selected vaccine-preventable diseases in the WHO European Region. Available at: https://www.who.int/europe/publications/m/item/epidata-5-2023
Supplementary files
