Characteristics of self-regulation of the epidemic process of infection caused by the Epstein–Barr virus (Herpesviridae: Lymphocryptovirus, HHV-4)

Cover Page

Cite item

Abstract

Introduction. Among the available scientific literature, there are no publications addressing processes of self-regulation in the parasite-host population systems with reference to chronic infections, including the infection caused by the Epstein–Barr virus (EBV infection).

The aim of the study is to assess manifestations of the epidemic process of chronic EBV infection through the lens of the basic tenets of the theory of self-regulation of parasitic systems.

Materials and methods. The study was performed using data from scientific publications selected from such database sources as Scopus, Web of Science, Cochrane Library, PubMed, CyberLeninka, RSCI, etc. The list of analyzed publications included published articles of the authors of this study, reporting the results of the retrospective epidemiological analysis of the incidence of infectious mononucleosis in Russia in general and in Moscow in particular, as well as the results of the laboratory tests regarding the detection frequency of specific antibodies to EBV proteins.

Results. The chronic course of EBV infection promotes a close long-term interaction between the pathogen and the host. The genetic variability of the pathogen and the functions of specific and nonspecific human immune defense systems play a key role in the interaction between two heterogeneous populations and underlie their phasal self-transformation. A variety of social and natural factors (adverse chemical, physical, biological, climatic impacts, etc.) trigger the reactivation of chronic EBV infection, thus providing the continuous existence of additional sources of infection in the host population.

Conclusion. The analysis of the manifestations of chronic EBV infection in the context of the theory of self-regulation of parasitic systems promotes the understanding of the factors underlying the unevenness of its epidemic process. The obtained data can be adjusted for other infections having similar transmission mechanisms and virus life cycles (including other herpes infections) to map out strategies to control the epidemic process of chronic infections spread by aerosol transmission of the pathogen.

About the authors

Tatyana V. Solomay

Central Research Institute of Epidemiology of Rospotrebnadzor; I.I. Mechnikov Scientific Research Institute of Vaccines and Serums, Ministry of Education and Science of Russia

Author for correspondence.
Email: solomay@rambler.ru
ORCID iD: 0000-0002-7040-7653
SPIN-code: 7688-1280

PhD (Medicine), Senior Researcher at the Laboratory of Epidemiological Analysis and Monitoring of Infectious Diseases

Russian Federation, 111123, Moscow; 105064, Moscow

Tatiana A. Semenenko

National Research Center of Epidemiology and Microbiology named after Honorary Academician N.F. Gamalei of the Ministry of Health of Russia; I.M. Sechenov First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University)

Email: semenenko@gamaleya.org
ORCID iD: 0000-0002-6686-9011
SPIN-code: 8375-2270

доктор медицинских наук, профессор, профессор кафедры инфектологии и вирусологии Института профессионального образования; руководитель отдела эпидемиологии

Russian Federation, 123098, Moscow; 119048, Moscow

Vasiliy G. Akimkin

Central Research Institute of Epidemiology of Rospotrebnadzor

Email: vgakimkin@yandex.ru
ORCID iD: 0000-0003-4228-9044
SPIN-code: 4038-7455

D.Sci. (Med.), Professor, Academician of the RAS, Director

Russian Federation, 111123, Moscow

References

  1. Agaeva M.I., Agaeva Z.A. Characteristic features of the course of herpesvirus infections during pregnancy. Klinicheskiy razbor v obshchey meditsine. 2022; (1): 49–55. https://doi.org/10.47407/kr2022.3.1.00118 (in Russian)
  2. Solomay T.V., Semenenko T.A., Karazhas N.V., Rybalkina T.N., Kornienko M.N., Bosh’yan R.E., et al. Assessing risks of infection with herpes viruses during transfusion of donor blood and its components. Analiz riska zdorov’yu. 2020; (2): 135–42. https://doi.org/10.21668/health.risk/2020.2.15.eng https://elibrary.ru/mjiicr
  3. Fedorova I.M., Koteleva S.I., Kapustin I.V., Blyakher M.S., Tul’skaya E.A., Zvereva N.N., et al. Hormone therapy affecting interferon defense in children with infectious mononucleosis. Infektsiya i immunitet. 2021; 11(5): 943–50. https://doi.org/10.15789/2220-7619-TSC-1350 https://elibrary.ru/dnyuor (in Russian)
  4. Ivanov A.A., Kulichenko T.V. Polypharmacy in infectious mononucleosis management: case series. Pediatricheskaya farmakologiya. 2022; 19(5): 412–6. https://doi.org/10.15690/pf.v19i5.2462 https://elibrary.ru/zxqiuy (in Russian)
  5. Vikulov G.Kh., Oradovskaya I.V., Kolobukhina L.V. Herpesvirus infections in children: prevalence, incidence, clinical forms, and management algorithm. Voprosy prakticheskoy pediatrii. 2022; 17(6): 126–41. https://doi.org/10.20953/1817-7646-2022-6-126-140 (in Russian)
  6. Solomay T.V., Semenenko T.A., Filatov N.N., Kostinov M.P., Il’ina N.I. Epstein–Barr virus: vaccine development. Immunologiya. 2020; 41(4): 381–90. https://doi.org/10.33029/0206-4952-2020-41-3-381-390 https://elibrary.ru/kmmvgr (in Russian)
  7. Solomay T.V., Semenenko T.A., Blokh A.I. Prevalence of Epstein–Barr virus antibodies in different age groups in Europe and Asia: a systematic review and meta-analysis. Zdravookhranenie Rossiyskoy Federatsii. 2021; 65(3): 276–86. https://doi.org/10.47470/0044-197X-2021-65-3-276-286 https://elibrary.ru/sljyeb (in Russian)
  8. Burmagina I.A., Pozdeeva M.A., Agafonov V.M. Infectious mononucleosis in the northern region. Sanitarnyy vrach. 2014; (11): 38–41. https://elibrary.ru/szojrb (in Russian)
  9. Solomay T.V., Semenenko T.A. Epstein–Barr viral infection is a global epidemiological problem. Voprosy virusologii. 2022; 67(4): 265–77. https://doi.org/10.36233/0507-4088-122 https://elibrary.ru/cnyvgi (in Russian)
  10. Solomay T.V. Dynamics of morbidity and territorial spread of infectious mononucleosis. Zdravookhranenie Rossiyskoy Federatsii. 2019; 63(4): 186–92. https://doi.org/10.18821/0044-197X-2019-63-4-186-192 https://elibrary.ru/aymphv (in Russian)
  11. Rostgaard K., Balfour H.H. Jr., Jarrett R., Erikstrup C., Pedersen O., Ullum H., et al. Primary Epstein–Barr virus infection with and without infectious mononucleosis. PLoS One. 2019; 14(12): e0226436. https://doi.org/10.1371/journal.pone.0226436
  12. Kuri A., Jacobs B.M., Vickaryous N., Pakpoor J., Middeldorp J., Giovannoni G., et al. Epidemiology of Epstein–Barr virus infection and infectious mononucleosis in the United Kingdom. BMC Public Health. 2020; 20(1): 912. https://doi.org/10.1186/s12889-020-09049-x
  13. Belyakov V.D. General laws of functioning of parasitic systems (mechanisms of self-regulation). Parazitologiya. 1986; 20(4): 249–55. (in Russian)
  14. Briko N.I., Mindlina A.Ya., Polibin R.V. Universality of changes in epidemic process manifestations of anthroponosis infections in recent decades. Zhurnal mikrobiologii, epidemiologii i immunobiologii. 2015; 55(5): 12–20. https://elibrary.ru/zqjycd (in Russian)
  15. Briko N.I. Theoretical generalizations in epidemiology: from history to the present. Epidemiologiya i vaktsinoprofilaktika. 2018; 17(5): 5–16. https://doi.org/10.31631/2073-3046-2018-17-5-5-16 https://elibrary.ru/pkowvr (in Russian)
  16. Belyakov V.D., Yafaev R.Kh. Epidemiology [Epidemiologiya]. Moscow: Meditsina; 1989. (in Russian)
  17. Semenenko T.A., Akimkin V.G., Burtseva E.I., Nozdracheva A.V., Simonova E.G., Tutel’yan A.V., et al. Characteristics of the epidemic situation associated with acute respiratory viral infections in the Russian Federation during the pandemic spread of COVID-19. Epidemiologiya i vaktsinoprofilaktika. 2022; 21(4): 4–15. https://doi.org/10.31631/2073-3046-2022-21-4-4-15 https://elibrary.ru/zovuqr (in Russian)
  18. Rednenko V.V., Semenov V.M., Korobov G.D. Epidemiological analysis of the annual dynamics of respiratory infections in a closed group. Mediko-biologicheskie i sotsial’no-psikhologicheskie problemy bezopasnosti v chrezvychaynykh situatsiyakh. 2011; (1): 24–8. https://elibrary.ru/qjhktx (in Russian)
  19. Kolesin I.D. An analysis of the displacement mechanism of predecessors by a pandemic strain. Biofizika. 2016; 61(6): 985–8. https://doi.org/10.1134/S0006350916060105 https://elibrary.ru/yvhdgd (in Russian)
  20. Akimkin V.G., Semenenko T.A., Ugleva S.V., Dubodelov D.V., Kuzin S.N., Yatsyshina S.B., et al. COVID-19 in Russia: epidemiology and molecular genetic monitoring. Vestnik Rossiyskoy akademii meditsinskikh nauk. 2022; 77(4): 254–60. https://doi.org/10.15690/vramn2121 https://elibrary.ru/dozijs (in Russian)
  21. Bilev A.E., Bileva N.A., Chupakhina L.V., Vandysheva T.V., Ariskina M.A. Is the theory of self-regulation of the epidemic process acceptable for the new coronavirus infection COVID-19? Vestnik meditsinskogo instituta «REAVIZ». Reabilitatsiya, Vrach i Zdorov’e. 2022; (4): 12–8. https://doi.org/10.20340/vmi-rvz.2022.4.COVID.2 (in Russian)
  22. Akimkin V.G., Kuzin S.N., Semenenko T.A., Ploskireva A.A., Dubodelov D.V., Tivanova E.V., et al. Characteristics of the COVID-19 epidemiological situation in the Russian Federation in 2020. Vestnik Rossiyskoy akademii meditsinskikh nauk. 2021; 76(4): 412–22. https://doi.org/10.15690/vramn1505 https://elibrary.ru/zmowbe (in Russian)
  23. Akimkin V.G., Popova A.Yu., Ploskireva A.A., Ugleva S.V., Semenenko T.A., Pshenichnaya N.Yu., et al. COVID-19: the evolution of the pandemic in Russia. Report I: Manifestations of the COVID-19 epidemic process. Zhurnal mikrobiologii, epidemiologii i immunobiologii. 2022; 99(3): 269–86. https://doi.org/10.36233/0372-9311-276 https://elibrary.ru/zxgtfd (in Russian)
  24. Popkova M.I., Utkin O.V. Genetic diversity of the Epstein–Barr virus: a modern view of the problem. Zhurnal mikrobiologii, epidemiologii i immunobiologii. 2022; 99(1): 93–108. https://doi.org/10.36233/0372-9311-228 https://elibrary.ru/kbfbkm (in Russian)
  25. Solomay T.V., Malakhova M.V., Shitikov E.A., Bespyatykh D.A., Veselovskiy V.A., Semenenko T.A., et al. Epstein–Barr virus: evaluation of gp350 and EBNA2 gene variability. Molekulyarnaya genetika, mikrobiologiya i virusologiya. 2022; 40(3): 32–40. https://doi.org/10.17116/molgen20224003132 https://elibrary.ru/dmfrxl (in Russian)
  26. Kukushkina E.A., Koteleva S.I., Blyakher M.S., Fedorova I.M., Ramazanova Z.K., Zvereva N.N., et al. Altered interferon defense in children with dynamically changed infectious mononucleosis. Infektsiya i immunitet. 2021; 11(1): 157–64. https://doi.org/10.15789/2220-7619-TIP-1349 https://elibrary.ru/asboym (in Russian)
  27. Ershov F.I., Ospel’nikova T.P., Narovlyanskiy A.N. Interferon status as a method of determination of nonspecific biomarkers of human immunopathology. Zhurnal mikrobiologii, epidemiologii i immunobiologii. 2019; (3): 91–9. https://doi.org/10.36233/0372-9311-2019-3-91-99 https://elibrary.ru/jmogdb (in Russian)
  28. Trisko A.A., Kolesnikova N.V., Avdeeva M.G., Chudilova G.A., Lomtatidze L.V. Peculiarities of cellular immunity in acute Epstein–Barr virus infection. Epidemiologiya i infektsionnye bolezni. 2015; 20(4): 13–5. https://elibrary.ru/uhyruv (in Russian)
  29. Chuykova K.I., Popova O.A. Improvement of treatment of infectious mononucleosis in children. Detskie infektsii. 2012; 11(4): 48–51. https://elibrary.ru/phgfzl (in Russian)
  30. Nagovitsyna E.B. Modern approaches to diagnostics and treatment of Epstein–Barr virus infectious mononucleosis. Dal’nevostochnyy meditsinskiy zhurnal. 2016; (3): 45–50. https://elibrary.ru/wmwfkx (in Russian)
  31. Solomay T.V., Semenenko T.A., Tutel’yan A.V., Bobrova M.V. Epidemiological features of infection caused by the Epstein–Barr virus. Zhurnal mikrobiologii, epidemiologii i immunologii. 2021; 98(6): 685–96. https://doi.org/10.36233/0372-9311-139 https://elibrary.ru/cyuyrd (in Russian)
  32. Solomay T.V., Semenenko A.V., Nikitina G.Yu., Shuvalov A.N. Predictive scenarios for the development of the epidemic process of Epstein–Barr virus infection in the absence of specific prevention measures and their implementation. Epidemiologiya i infektsionnye bolezni. Aktual’nye voprosy. 2023; 13(1): 60–9. https://doi.org/10.18565/epidem.2023.13.1.60–9 (in Russian)
  33. Solomay T.V., Filatov N.N. Seasonality of infection caused by the Epstein–Barr virus. Zhurnal infektologii. 2020; 12(4): 93–100. https://doi.org/10.22625/2072-6732-2020-12-4-93-100 https://elibrary.ru/dshwxp (in Russian)
  34. Solomay T.V., Filatov N.N., Kaira A.N., Lavrov V.F., Kuzin A.A., Lantsov E.V. Similarity of manifestations of epidemic processes of infectious mononucleosis and upper respiratory tract infections. Vestnik Rossiyskoy Voenno-meditsinskoy akademii. 2020; (3): 46–51. https://elibrary.ru/fwocgg (in Russian)
  35. Korotchenko S.I. Problems of immunization of persons subject to military conscription. Sanitarnyy vrach. 2016; (12): 8–13. https://elibrary.ru/xrmzgv (in Russian)
  36. Gotvyanskaya T.P., Mukasheva E.A., Nozdracheva A.V., Sipacheva N.B., Semenenko A.V., Ignat’eva A.V., et al. Incidence and population immunity to influenza and ARVI in the context of the COVID-19 pandemic. Sanitarnyy vrach. 2023; (3): 153–63. https://doi.org/10.33920/med-08-2303-03 (in Russian)
  37. Solomay T.V., Semenenko T.A., Kuzin S.N., Akimkin V.G. Territorial features of the epidemic process of infection caused by the Epstein–Barr virus. Epshteyna-Barr. Infektsionnye bolezni: novosti, mneniya, obuchenie. 2021; 10(4): 81–9. https://doi.org/10.33029/2305-3496-2021-10-4-81-89 https://elibrary.ru/zsblzm (in Russian)
  38. Solomay T.V., Semenenko T.A., Isaeva E.I., Vetrova E.N., Chernyshova A.I., Romenskaya E.V., et al. COVID-19 and the risk of herpesvirus reactivation. Epidemiologiya i infektsionnye bolezni. Aktual’nye voprosy. 2021; 11(2): 55–62. https://doi.org/10.18565/epidem.2021.11.2.55-62 https://elibrary.ru/rgixoj (in Russian)
  39. Solomay T.V., Semenenko T.A., Filatov N.N., Kolbutova K.B., Oleynikova D.Yu., Karazhas N.V. The role of children and adults as a reservoir of pathogens during the seasonal rise in the incidence of upper respiratory tract infections. Detskie infektsii. 2020; 19(3): 5–11. https://doi.org/10.22627/2072-8107-2020-19-3-5-11 https://elibrary.ru/zchyjf (in Russian)
  40. Gralton J., Tovey E., McLaws M.L., Rawlinson W.D. The role of particle size in aerosolised pathogen transmission: a review. J. Infect. 2011; 62(1): 1–13. https://doi.org/10.1016/j.jinf.2010.11.010
  41. Farisyi M.A., Sufiawati I. Detection of Epstein–Barr virus DNA in saliva of HIV-1-infected individuals with oral hairy leukoplakia. Oral Dis. 2020; 26(Suppl. 1): 158–60. https://doi.org/10.1111/odi.13400
  42. Koshy E., Mengting L., Kumar H., Jianbo W. Epidemiology, treatment and prevention of zoster: A comprehensive review. Indian J. Dermatol. Venereol. Leprol. 2018; 84(3): 251–62. https://doi.org/10.4103/ijdvl.IJDVL_1021_16
  43. Suarez F., Lortholary O., Hermine O., Lecuit M. Infection-associated lymphomas derived from marginal zone B cells: a model of antigen-driven. Blood. 2006; 107(8): 3034–44. https://doi.org/10.1182/blood-2005-09-3679
  44. Sinitsyn M.V., Bogorodskaya E.M., Rodina O.V., Kubrakova E.P., Romanova E.Yu., Bugun A.V. The damage of the central nervous system in the patients with tuberculosis in modern epidemiological conditions. Infektsionnye bolezni: novosti, mneniya, obuchenie. 2018; 7(1): 111–20. https://doi.org/10.24411/2305-3496-2018-00015 https://elibrary.ru/yshtny (in Russian)
  45. Mordyk A.V., Sitnikova S.V., Puzyreva L.V., Nazarova O.I., Fursevich L.N. Manifestations of HIV infection associated with the results of treatment of tuberculosis in patients admitted to a specialized hospital. VICh-infektsiya i immunosupressii. 2015; 7(1): 69–75. https://elibrary.ru/tnbset (in Russian)
  46. Solomay T.V., Semenenko T.A., Filatov N.N., Vedunova S.L., Lavrov V.F., Smirnova D.I., et al. Reactivation of Epstein–Barr virus (Herpesviridae: Lymphocryptovirus, HHV-4) infection during COVID-19: epidemiological features. Voprosy virusologii. 2021; 66(2): 152–61. https://doi.org/10.36233/0507-4088-40 https://elibrary.ru/nhbzyr (in Russian)
  47. Rooney B.V., Crucian B.E., Pierson D.L., Laudenslager M.L., Mehta S.K. Herpes virus reactivation in astronauts during spaceflight and its application on earth. Front. Microbiol. 2019; 10: 16. https://doi.org/10.3389/fmicb.2019.00016
  48. Mehta S.K., Bloom D.C., Plante I., Stowe R., Feiveson A.H., Renner A., et al. Reactivation of latent Epstein–Barr virus: a comparison after exposure to gamma, proton, carbon, and iron radiation. Int. J. Mol. Sci. 2018; 19(10): 2961. https://doi.org/10.3390/ijms19102961

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Multi-year dynamics of the infectious mononucleosis incidence in Moscow in 2003–2017 (per 100,000 population)

Download (60KB)
3. Fig. 2. Intra-annual dynamics of the infectious mononucleosis incidence and VCA IgG prevalence in Moscow: The multi-year average rates in 2010–2022.

Download (40KB)

Copyright (c) 2023 Solomay T.V., Semenenko T.A., Akimkin V.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies