Molecular and biological properties of the African swine fever virus (Asfarviridae: Asfivirus) isolate ASF/Tatarstan 20/WB-12276

Cover Page

Cite item

Full Text

Abstract

Introduction. Up-to-date data and full characterization of circulating ASFV isolates play a crucial role in virus eradication and control in endemic regions and countries.

The aim of the study was to evaluate and characterize the molecular and biological properties of the ASFV isolate ASF/Tatarstan 20/WB-12276, conduct phylogenetic analysis, and compare the results with isolates circulating in Europe and Asia.

Materials and methods. For bioassay, eight heads of the Large White pigs weighing 15–20 kg/head were used. Detection of specific anti-ASFV antibodies by ELISA and immunoperoxidase method. Detection of ASFV genome was performed by qPCR. Isolation of ASF/Tatarstan 20/WB-12276 and determination of titer were performed in pig spleen cell culture. Sequencing was carried out by the Sanger method.

Results. The virus was characterized as highly virulent and capable of causing acute to subacute forms of ASF. Phylogenetic analysis revealed substitutions in the genome of the ASF/Tatarstan 20/WB-12276 isolate (IGR/I73R-I329L and I267L markers) that supported the clustering of the studied variant with isolates prevalent in most of Europe and Asia.

Conclusion. For the first time, the molecular and biological properties of the ASF/Tatarstan 20/WB-12276 virus isolate taken from a wild boar shot on the territory of the Republic of Tatarstan were studied and analyzed.

About the authors

Andrey R. Shotin

Federal Center for Animal Health (ARRIAH)

Author for correspondence.
Email: shotin@arriah.ru
ORCID iD: 0000-0001-9884-1841

Candidate of Science (Veterinary Medicine), Researcher, Reference Laboratory for African Swine Fever

Russian Federation, 600901, Vladimir

Roman S. Chernyshev

Federal Center for Animal Health (ARRIAH)

Email: chernishev_rs@arriah.ru
ORCID iD: 0000-0003-3604-7161

Postgraduate Student, Veterinarian, Reference Laboratory for African Swine Fever

Russian Federation, 600901, Vladimir

Elizaveta O. Morozova

Federal Center for Animal Health (ARRIAH)

Email: morozova_eo@arriah.ru
ORCID iD: 0000-0002-0955-9586

Postgraduate Student, Biologist, Reference Laboratory for African Swine Fever

Russian Federation, 600901, Vladimir

Alexey S. Igolkin

Federal Center for Animal Health (ARRIAH)

Email: igolkin_as@arriah.ru
ORCID iD: 0000-0002-5438-8026

Candidate of Science (Veterinary Medicine), Head of Reference Laboratory for African swine fever

Russian Federation, 600901, Vladimir

Konstantin N. Gruzdev

Federal Center for Animal Health (ARRIAH)

Email: gruzdev@arriah.ru
ORCID iD: 0000-0003-3159-1969

Doctor of Science (Biology), Professor, Chief Researcher, Information and Analysis Centre

Russian Federation, 600901, Vladimir

Ivan S. Kolbin

Federal Center for Animal Health (ARRIAH)

Email: kolbin@arriah.ru
ORCID iD: 0000-0003-4692-1297

Postgraduate Student, Veterinarian, Reference Laboratory for African Swine Fever

Russian Federation, 600901, Vladimir

Ivan A. Lavrentiev

Federal Center for Animal Health (ARRIAH)

Email: lavrentev@arriah.ru
ORCID iD: 0009-0003-0552-3812

Postgraduate Student, Leading Veterinarian, Reference Laboratory for African Swine Fever

Russian Federation, 600901, Vladimir

Ali Mazloum

Federal Center for Animal Health (ARRIAH)

Email: mazlum@arriah.ru
ORCID iD: 0000-0002-5982-8393

Candidate of Science (Biology), Senior Researcher, Reference Laboratory for African Swine Fever

Russian Federation, 600901, Vladimir

References

  1. Igolkin A.S., Karaulov A.K., Gruzdev K.N. African swine fever, 2020 In: Proceedings of the All-Russian Research Institute of Experimental Veterinary Medicine named after Y.R. Kovalenko. Volume 82 [Trudy Vserossiyskogo NII eksperimental’noy veterinarii im. Ya.R. Kovalenko. Tom 82]. Moscow; 2021: 58–64. https://doi.org/10.31016/viev-2021-18-8 (in Russian)
  2. Shotin A.R., Zhukov I.Yu., Pershin A.S., Mazlum A., Shevchenko I.V., Igolkin A.S., et al. Effect of pig serum storage conditions on detection of anti-ASFV antibodies by ELISA. Veterinariya segodnya. 2021; (3): 216–23. https://doi.org/10.29326/2304-196X-2021-3-38-216-223 https://elibrary.ru/sfvomt (in Russian)
  3. Shotin A.R., Igolkin A.S., Mazlum A., Shevchenko I.V., Bardina N.S., Morozova E.O., et al. African swine fever in the Primorsky Krai: disease situation and molecular and biological properties of the isolate recovered from a wild boar long bone. Veterinariya segodnya. 2022; 11(4): 347–58. https://doi.org/10.29326/2304-196X-2022-11-4-347-358 https://elibrary.ru/uhggjy (in Russian)
  4. Balyshev V.M., Vlasov M.E., Imatdinov A.R., Titov I.A., Morgunov S.Yu., Malogolovkin A.S. Biological properties and molecular genetic characteristics of the African swine fever virus, isolated in 2016-2017 in various regions of the Russian Federation. Rossiyskaya sel’skokhozyaystvennaya nauka. 2018; (4): 54–7. https://doi.org/10.31857/S250026270000536-4 https://elibrary.ru/yamjtn (in Russian)
  5. Bolgova M.V., Morgunov Yu.P., Vasil’ev A.P., Balyshev V.M. Biological characteristics of African swine fever virus isolates detected in the Russian Federation in 2012. Aktual’nye voprosy veterinarnoy biologii. 2013; (4): 26–30. https://elibrary.ru/rppyxf (in Russian)
  6. Vlasov M.E., Sibgatullova A.K., Balyshev V.M. The course of disease in pigs infected with ASF virus isolates, obtained in different regions of the Russian Federation. Veterinariya. 2019; (4): 15–9. https://doi.org/10.30896/0042-4846.2019.22.4.15-19 https://elibrary.ru/eohxkh (in Russian)
  7. Vlasov M.E. Clinical manifestations and disease pathological changes in pigs infected with ASF virus isolates from wild boars. Politematicheskiy setevoy elektronnyy nauchnyy zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta. 2017; (134): 1055–65. https://doi.org/10.21515/1990-4665-134-086 https://elibrary.ru/ynwynm (in Russian)
  8. Pershin A., Shevchenko I., Igolkin A., Zhukov I., Mazloum A., Aronova E., et al. A long-term study of the biological properties of ASF virus isolates originating from various regions of the Russian Federation in 2013–2018. Vet. Sci. 2019; 6(4): 99. https://doi.org/10.3390/vetsci6040099 https://elibrary.ru/eybfvu
  9. Remyga S.G., Pershin A.S., Shevchenko I.V., Igolkin A.S., Shevtsov A.A. Clinical and post-mortem signs in European wild boars and domestic pigs infected with African swine fever virus. Veterinariya segodnya. 2016; (3): 46–51. https://elibrary.ru/wwrlmf (in Russian)
  10. Zhukov I.Yu. Biological properties of African swine fever virus isolates and features of the course of the disease during experimental infection: Diss. Vladimir; 2018. (in Russian)
  11. Shevchenko I.V. Biological properties and analysis of complete genomes of Russian isolates of African swine fever virus isolated in 2013-2014: Diss. Vladimir; 2017. (in Russian)
  12. Events management / WAHIS / https://wahis.woah.org/#/event-management (дата обращения: 06.02.2022)
  13. Desmecht D., Gerbier G., Gortázar Schmidt C., Grigaliuniene V., Helyes G., Kantere M., et al. Epidemiological analysis of African swine fever in the European Union (September 2019 to August 2020). EFSA J. 2021; 19(5): e06572. https://doi.org/10.2903/j.efsa.2021.6572
  14. Karaulov A.K., Shevtsov A.A., Petrova O.N., Korennoy F.I., Gulenkin V.M. ASF epizootics on the territory of the Russian Federation: forecast of the situation for 2021 and recommendations on measures to contain it. BIO. 2021; (2): 14–21. https://elibrary.ru/jqnqdk (in Russian)
  15. Petrova O.N., Korennoy F.I., Karaulov A.K. Epizootics of African swine fever in the territory of the Russian Federation: damage assessment based on generalized data on the epizootic situation for 2007-2020. BIO. 2021; (3): 18–22. https://elibrary.ru/afppww (in Russian)
  16. Mazloum A., van Schalkwyk A., Chernyshev R., Igolkin A., Heath L., Sprygin A. A guide to molecular characterization of genotype II African swine fever virus: essential and alternative genome markers. Microorganisms. 2023; 11(3): 642. https://doi.org/10.3390/microorganisms11030642
  17. Vilem A., Nurmoja I., Niine T., Riit T., Nieto R., Viltrop A., et al. Molecular characterization of African swine fever virus isolates in Estonia in 2014–2019. Pathogens. 2020; 9(7): 582. https://doi.org/10.3390/pathogens9070582
  18. Phologane S.B., Bastos A.D., Penrith M.L. Intra- and inter-genotypic size variation in the central variable region of the 9RL open reading frame of diverse African swine fever viruses. Virus Genes. 2005; 31(3): 357–60. https://doi.org/10.1007/s11262-005-3254-z
  19. Nix R.J., Gallardo C., Hutchings G., Blanco E., Dixon L.K. Molecular epidemiology of African swine fever virus studied by analysis of four variable genome regions. Arch. Virol. 2006; 151(12): 2475–94. https://doi.org/10.1007/s00705-006-0794-z
  20. Rowlands R.J., Michaud V., Heath L., Hutchings G., Oura C., Vosloo W., et al. African swine fever virus isolate, Georgia, 2007. Emerg. Infect. Dis. 2008; 14(12): 1870–4. https://doi.org/10.3201/eid1412.080591
  21. Gallardo C., Mwaengo D.M., Macharia J.M., Arias M., Taracha E.A., Soler A., et al. Enhanced discrimination of African swine fever virus isolates through nucleotide sequencing of the p54, p72, and pB602L (CVR) genes. Virus Genes. 2009; 38(1): 85–95. https://doi.org/10.1007/s11262-008-0293-2
  22. Lubisi B.A., Bastos A.D., Dwarka R.M., Vosloo W. Intra-genotypic resolution of African swine fever viruses from an East African domestic pig cycle: a combined p72-CVR approach. Virus Genes. 2007; 35(3): 729–35. https://doi.org/10.1007/s11262-007-0148-2
  23. Sidi M., Zerbo H.L., Ouoba B.L., Settypalli T.B.K., Bazimo G., Ouandaogo H.S., et al. Molecular characterization of African swine fever viruses from Burkina Faso, 2018. BMC Vet. Res. 2022; 18(1): 69. https://doi.org/10.1186/s12917-022-03166-y
  24. Mazloum A., Van Schalkwyk A., Chernyshev R., Shotin A., Korennoy F.I., Igolkin A., et al. Genetic characterization of the central variable region in African swine fever virus isolates in the Russian Federation from 2013 to 2017. Pathogens. 2022; 11(8): 919. https://doi.org/10.3390/pathogens11080919 https://elibrary.ru/ojluot
  25. Mazur-Panasiuk N., Walczak M., Juszkiewicz M., Woźniakowski G. The spillover of African swine fever in western Poland revealed its estimated origin on the basis of O174L, K145R, MGF 505-5R and IGR I73R/I329L genomic sequences. Viruses. 2020; 12(10): 1094. https://doi.org/10.3390/v12101094
  26. Shi K., Liu H., Yin Y., Si H., Long F., Feng S. Molecular characterization of African swine fever virus from 2019-2020 outbreaks in Guangxi province, Southern China. Front. Vet. Sci. 2022; 9: 912224. https://doi.org/10.3389/fvets.2022.912224.
  27. Mazur-Panasiuk N., Woźniakowski G. The unique genetic variation within the O174L gene of Polish strains of African swine fever virus facilitates tracking virus origin. Arch. Virol. 2019; 164(6): 1667–72. https://doi.org/10.1007/s00705-019-04224-x
  28. Mazloum A., van Schalkwyk A., Shotin A., Zinyakov N., Igolkin A., Chernishev R., et al. Whole-genome sequencing of African swine fever virus from wild boars in the Kaliningrad region reveals unique and distinguishing genomic mutations. Front. Vet. Sci. 2023; 9: 1019808. https://doi.org/10.3389/fvets.2022.1019808.
  29. Mazloum A., van Schalkwyk A., Shotin A., Igolkin A., Shevchenko I., Gruzdev K.N., et al. Comparative analysis of full genome sequences of African swine fever virus isolates taken from wild boars in Russia in 2019. Pathogens. 2021; 10(5): 521. https://doi.org/10.3390/pathogens10050521 https://elibrary.ru/mwsggz
  30. Zhang Y., Ke J., Zhang J., Yue H., Chen T., Li Q., et al. I267L is neither the virulence- nor the replication-related gene of African swine fever virus and its deletant is an ideal fluorescent-tagged virulence strain. Viruses. 2021; 14(1): 53. https://doi.org/10.3390/v14010053
  31. Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018; 35(6): 1547–9. https://doi.org/10.1093/molbev/msy096
  32. Balyshev V.M., Kurinnov V.V., Tsybanov S.Zh., Kalantaenko Yu.F., Kolbasov D.V., Pronin V.V., et al. Biological characteristics of the African swine fever virus isolated in the Russian Federation. Veterinariya. 2010; (7): 25–7. https://elibrary.ru/msrezn (in Russian)
  33. Gallardo M.C., Reoyo A.T., Fernández-Pinero J., Iglesias I., Muñoz M.J., Arias M.L. African swine fever: a global view of the current challenge. Porcine Health Manag. 2015; 1: 21. https://doi.org/10.1186/s40813-015-0013-y
  34. Gallardo C., Fernández-Pinero J., Arias M. African swine fever (ASF) diagnosis, an essential tool in the epidemiological investigation. Virus Res. 2019; 271: 197676. https://doi.org/10.1016/j.virusres.2019.197676
  35. Gap Analysis Report. Global African Swine Fever; 2018. Available at: https://www.ars.usda.gov/ARSUserFiles/np103/SymposiumWorkshopsMeetings/GARA%20Gap%20Analysis%20Report%202018%2011-11-18.pdf
  36. Mur L., Igolkin A., Varentsova A., Pershin A., Remyga S., Shevchenko I., et al. Detection of African swine fever antibodies in experimental and field samples from the Russian Federation: implications for control. Transbound. Emerg. Dis. 2016; 63(5): e436–40. https://doi.org/10.1111/tbed.12304 https://elibrary.ru/xslmnr
  37. OIE Terrestrial Manual. Chapter 3.8. 1. African swine fever (infection with African swine fever virus). OIE; 2019.
  38. Gervasi V., Marcon A., Bellini S., Guberti V. Evaluation of the efficiency of active and passive surveillance in the detection of African swine fever in wild boar. Vet. Sci. 2019; 7(1): 5. https://doi.org/10.3390/vetsci70100055

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Appendix No. 1
Download (246KB)
3. Fig. 1. Results of body temperature measurements and testing of blood samples from infected pigs (№№ 1–3) by real-time PCR (qPCR) and ELISA (n = 3). Note: † – death date; the horizontal line across the temperature axis marks the limit of the physiological normal body temperature (40.0 °С); the green bars correspond for the qPCR Ct values.

Download (312KB)
4. Fig. 2. Results of body temperature measurements and testing of blood samples from infected pigs (№№ 4–6) by qPCR, ELISA, and IPM (n = 3). † – death date; the horizontal line across the temperature axis marks the limit of the physiological normal body temperature (40.0 °С); the bars correspond for the qPCR Ct values; the vertical dotted line across the dates shows the first positive IPM result.

Download (334KB)
5. Fig. 3. Results of body temperature measurements and testing of blood samples from infected pigs (№№ 7, 8) by qPCR, ELISA, and IPM (n = 3) † – death date; the horizontal line across the temperature axis marks the limit of the physiological normal body temperature (40.0 °С); the bars correspond for the qPCR Ct values; the vertical dotted line across the dates shows the first positive IPM result.

Download (245KB)

Copyright (c) 2023 Shotin A.R., Chernyshev R.S., Morozova E.O., Igolkin A.S., Gruzdev K.N., Kolbin I.S., Lavrentiev I.A., Mazloum A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies