Mathematical model for assessing the level of cross-immunity between strains of influenza virus subtype H3N2
- 作者: Asatryan M.N.1, Timofeev B.I.1, Shmyr I.S.1, Khachatryan K.R.2, Shcherbinin D.N.1, Timofeeva T.A.1, Gerasimuk E.R.3, Agasaryan V.G.1, Ershov I.F.1, Shashkova T.I.4, Kardymon O.L.4, Ivanisenko N.V.4, Semenenko T.A.1, Naroditsky B.S.1, Logunov D.Y.1, Gintsburg A.L.1
-
隶属关系:
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya
- National Research University Higher School of Economics
- State University “Dubna”
- Artificial Intelligence Research Institute
- 期: 卷 68, 编号 3 (2023)
- 页面: 252-264
- 栏目: TO VIROLOGIST’S AID
- URL: https://journals.rcsi.science/0507-4088/article/view/132637
- DOI: https://doi.org/10.36233/0507-4088-179
- EDN: https://elibrary.ru/rexvea
- ID: 132637
如何引用文章
详细
Introduction. The WHO regularly updates influenza vaccine recommendations to maximize their match with circulating strains. Nevertheless, the effectiveness of the influenza A vaccine, specifically its H3N2 component, has been low for several seasons.
The aim of the study is to develop a mathematical model of cross-immunity based on the array of published WHO hemagglutination inhibition assay (HAI) data.
Materials and methods. In this study, a mathematical model was proposed, based on finding, using regression analysis, the dependence of HAI titers on substitutions in antigenic sites of sequences. The computer program we developed can process data (GISAID, NCBI, etc.) and create “real-time” databases according to the set tasks.
Results. Based on our research, an additional antigenic site F was identified. The difference in 1.6 times the adjusted R2, on subsets of viruses grown in cell culture and grown in chicken embryos, demonstrates the validity of our decision to divide the original data array by passage histories. We have introduced the concept of a degree of homology between two arbitrary strains, which takes the value of a function depending on the Hamming distance, and it has been shown that the regression results significantly depend on the choice of function. The provided analysis showed that the most significant antigenic sites are A, B, and E. The obtained results on predicted HAI titers showed a good enough result, comparable to similar work by our colleagues.
Conclusion. The proposed method could serve as a useful tool for future forecasts, with further study to confirm its sustainability.
作者简介
Marina Asatryan
National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya
编辑信件的主要联系方式.
Email: masatryan@gamaleya.org
ORCID iD: 0000-0001-6273-8615
PhD (Med.), senior researcher epidemiological cybernetics group of the Epidemiology Department
俄罗斯联邦, 123098, MoscowBoris Timofeev
National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya
Email: masatryan@gamaleya.org
ORCID iD: 0000-0001-7425-0457
PhD (Phys.-Mat.), senior researcher D.I. Ivanovsky Institute of Virology Division
俄罗斯联邦, 123098, MoscowIlya Shmyr
National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya
Email: masatryan@gamaleya.org
ORCID iD: 0000-0002-8514-5174
researcher epidemiological cybernetics group of the Epidemiology Department
俄罗斯联邦, 123098, MoscowKarlen Khachatryan
National Research University Higher School of Economics
Email: masatryan@gamaleya.org
ORCID iD: 0000-0002-1934-532X
master's student
俄罗斯联邦, 123458, MoscowDmitrii Shcherbinin
National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya
Email: masatryan@gamaleya.org
ORCID iD: 0000-0002-8518-1669
PhD (Biol.), researcher, Department of Genetics and Molecular Biology of Bacteria
俄罗斯联邦, 123098, MoscowTatiana Timofeeva
National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya
Email: masatryan@gamaleya.org
ORCID iD: 0000-0002-8991-8525
PhD (Biol.), head of laboratory D.I. Ivanovsky Institute of Virology Division
俄罗斯联邦, 123098, MoscowElita Gerasimuk
State University “Dubna”
Email: masatryan@gamaleya.org
ORCID iD: 0000-0002-7364-163X
PhD (Med.), Assoc. Prof.
俄罗斯联邦, 141982, DubnaVaagn Agasaryan
National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya
Email: masatryan@gamaleya.org
ORCID iD: 0009-0009-3824-7061
researcher epidemiological cybernetics group of the Epidemiology Department
俄罗斯联邦, 123098, MoscowIvan Ershov
National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya
Email: masatryan@gamaleya.org
ORCID iD: 0000-0002-3333-5347
researcher epidemiological cybernetics group of the Epidemiology Department
俄罗斯联邦, 123098, MoscowTatyana Shashkova
Artificial Intelligence Research Institute
Email: masatryan@gamaleya.org
ORCID iD: 0000-0002-8754-8727
PhD (Biol.), senior researcher Bioinformatics group
俄罗斯联邦, 121170, MoscowOlga Kardymon
Artificial Intelligence Research Institute
Email: masatryan@gamaleya.org
ORCID iD: 0000-0002-4827-8891
head of Bioinformatics research group
俄罗斯联邦, 121170, MoscowNikita Ivanisenko
Artificial Intelligence Research Institute
Email: masatryan@gamaleya.org
ORCID iD: 0000-0002-0333-8117
PhD (Biol.), senior researcher Bioinformatics group
俄罗斯联邦, 121170, MoscowTatyana Semenenko
National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya
Email: masatryan@gamaleya.org
ORCID iD: 0000-0002-6686-9011
D. Sci. (Med.), Prof., Full Member of RANS, head Department of Epidemiology
俄罗斯联邦, 123098, MoscowBoris Naroditsky
National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya
Email: masatryan@gamaleya.org
ORCID iD: 0000-0001-5522-8238
D. Sci. (Biol.), professor, Deputy Director for research D.I. Ivanovsky Institute of Virology Division
俄罗斯联邦, 123098, MoscowDenis Logunov
National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya
Email: masatryan@gamaleya.org
D. Sci. (Biol.), Full Member of RAS, Deputy Director for research
俄罗斯联邦, 123098, MoscowAleksander Gintsburg
National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya
Email: masatryan@gamaleya.org
ORCID iD: 0000-0003-1769-5059
D. Sci. (Biol.), Prof., Full Member of RAS, Director
俄罗斯联邦, 123098, Moscow参考
- Russell C.A., Jones T.C., Barr I.G., Cox N.J., Garten R.J., Gregory V., et al. Influenza vaccine strain selection and recent studies on the global migration of seasonal influenza viruses. Vaccine. 2008; 26(Suppl. 4): 31–4. https://doi.org/10.1016/j.vaccine.2008.07.078
- Belongia E.A., Simpson M.D., King J.P., Sundaram M.E., Kelley N.S., Osterholm M.T., et al. Variable influenza vaccine effectiveness by subtype: a systematic review and meta-analysis of test-negative design studies. Lancet Infect. Dis. 2016; 16(8): 942–51. https://doi.org/10.1016/S1473-3099(16)00129-8
- Jackson M.L., Chung J.R., Jackson L.A., Phillips C.H., Benoit J., Monto A.S., et al. Influenza vaccine effectiveness in the United States during the 2015-2016 season. N. Engl. J. Med. 2017; 377(6): 534–43. https://doi.org/10.1056/NEJMoa1700153
- Rolfes M.A., Flannery B., Chung J.R., O’Halloran A., Garg S., Belongia E.A., et al. Effects of influenza vaccination in the United States during the 2017-2018 influenza season. Clin. Infect. Dis. 2019; 69(11): 1845–53. https://doi.org/10.1093/cid/ciz075
- Doyle J.D., Chung J.R., Kim S.S., Gaglani M., Raiyani C., Zimmerman R.K., et al. Interim estimates of 2018-2019 seasonal influenza vaccine effectiveness – United States. MMWR. Morb. Mortal. Wkly Rep. 2019; 68(6): 135–9. https://doi.org/10.15585/mmwr.mm6806a2
- Zost S.J., Parkhouse K., Gumina M.E., Kim K., Diaz P.S., Wilson P.C., et al. Contemporary H3N2 influenza viruses have a glycosylation site that alters binding of antibodies elicited by egg-adapted vaccine strains. Proc. Natl Acad. Sci. USA. 2017; 114(47): 12578–83. https://doi.org/10.1073/pnas.1712377114
- Gouma S., Weirick M., Hensley S.E. Antigenic assessment of the H3N2 component of the 2019-2020 northern hemisphere influenza vaccine. Nat. Commun. 2020; 11(1): 2445. https://doi.org/10.1038/s41467-020-16183-y
- Cobey S., Gouma S., Parkhouse K., Chambers B.S., Ertl H.C., Schmader K.E., et al. Poor immunogenicity, not vaccine strain egg adaptation, may explain the low H3N2 influenza vaccine effectiveness in 2012-2013. Clin. Infect. Dis. 2018; 67(3): 327–33. https://doi.org/10.1093/cid/ciy097
- Klingen T.R., Reimering S., Guzmán C.A., McHardy A.C. In silico vaccine strain prediction for human influenza viruses. Trends Microbiol. 2018; 26(2): 119–31. https://doi.org/10.1016/j.tim.2017.09.001
- Morris D.H., Gostic K.M., Pompei S., Bedford T., Łuksza M., Neher R.A., et al. Predictive modeling of influenza shows the promise of applied evolutionary biology. Trends Microbiol. 2018; 26(2): 102–18. https://doi.org/10.1016/j.tim.2017.09.004
- Timofeeva T.A., Asatryan M.N., Al’tshteyn A.D., Naroditskiy B.S., Gintsburg A.L., Kaverin N.V. Predicting the evolutionary variability of the influenza A virus. Acta Naturae. 2017; 9(3): 48–54. https://doi.org/10.32607/20758251-2017-9-3-48-54 https://elibrary.ru/zqitjr
- Boev B.V. Modeling of the epidemic of influenza A(H1N1) in Russia season 2009-2010. Epidemiologiya i vaktsinoprofilaktika. 2010; (1): 52–8. https://elibrary.ru/laedxn (in Russian)
- Huddleston J., Barnes J.R., Rowe T., Kondor R., Wentworth D.E., Whittaker L., et al. Integrating genotypes and phenotypes improves long-term forecasts of seasonal influenza A/H3N2 evolution. eLife. 2020; 9: e60067. https://doi.org/10.7554/eLife.60067
- CDC. Center for Disease Control and Prevention. Influenza (Flu). Available at: https://www.cdc.gov/flu/
- Bedford T., Suchard M.A., Lemey P., Dudas G., Gregory V., Hay A.J., et al. Integrating influenza antigenic dynamics with molecular evolution. eLife. 2014; 3: e01914. https://doi.org/10.7554/eLife.01914
- Anderson C.S., McCall P.R., Stern H.A., Yang H., Topham D.J. Antigenic cartography of H1N1 influenza viruses using sequence-based antigenic distance calculation. BMC Bioinformatics. 2018; 19(1): 51. https://doi.org/10.1186/s12859-018-2042-4
- Lee M.S., Chen J.S. Predicting antigenic variants of influenza A/H3N2 viruses. Emerg. Infect. Dis. 2004; 10(8): 1385–90. https://doi.org/10.3201/eid1008.040107
- Lees W.D., Moss D.S., Shepherd A.J. A computational analysis of the antigenic properties of haemagglutinin in influenza a H3N2. Bioinformatics. 2010; 26(11): 1403–8. https://doi.org/10.1093/bioinformatics/btq160
- Burnet F.M., Lush D. The action of certain surface active agents on viruses. Aust. J. Exp. Biol. Med. Sci. 1940; 18: 141–50.
- Archetti I., Horsfall F.L. Persistent antigenic variation of influenza A viruses after incomplete neutralization in ovo with heterologous immune serum. J. Exp. Med. 1950; 92(5): 441–62. https://doi.org/10.1084/jem.92.5.441
- Lapedes A., Farber R. The geometry of shape space: application to influenza. J. Theor. Biol. 2001; 212(1): 57–69. https://doi.org/10.1006/jtbi.2001.2347
- Smith D.J., Lapedes A.S., de Jong J.C., Bestebroer T.M., Rimmelzwaan G.F., Osterhaus A.D., et al. Mapping the antigenic and genetic evolution of influenza virus. Science. 2004; 305(5682): 371–6. https://doi.org/10.1126/science.1097211
- Wiley D.C., Skehel J.J. The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu. Rev. Biochem. 1987; 56: 365–94. https://doi.org/10.1146/annurev.bi.56.070187.002053
- Wiley D.C., Wilson I.A., Skehel J.J. Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature. 1981; 289(5796): 373–8. https://doi.org/10.1038/289373a0
- Wilson I.A., Cox N.J. Structural basis of immune recognition of influenza virus hemagglutinin. Annu. Rev. Immunol. 1990; 8: 737–71. https://doi.org/10.1146/annurev.iy.08.040190.003513
- Liao Y.C., Lee M.S., Ko C.Y., Hsiung C.A. Bioinformatics models for predicting antigenic variants of influenza A/H3N2 virus. Bioinformatics. 2008; 24(4): 505–12. https://doi.org/10.1093/bioinformatics/btm638
- Asatryan M.N., Agasaryan V.G, Shcherbinin D.N., Timofeev B.I., Ershov I.F., Shmyr I.S., et al. Influenza IDE. Registration certificate № 2020617965; 2020. (in Russian)
- Lawson C.L., Hanson R.J. Solving Least Squares Problems. New Jersey: Englewood Cliffs; 1974.
- Khalafyan A.A. Mathematical Statistics with Elements of Probability [Matematicheskaya statistika s elementami teorii veroyatnosti]. Moscow: Binom; 2010. (in Russian)
- Stephenson I., Gaines Das R., Wood J.M., Katz J.M. Comparison of neutralising antibody assays for detection of antibody to influenza A/H3N2 viruses: an international collaborative study. Vaccine. 2007; 25(20): 4056–63. https://doi.org/10.1016/j.vaccine.2007.02.039
- Wood J.M., Major D., Heath A., Newman R.W., Höschler K., Stephenson I., et al. Reproducibility of serology assays for pandemic influenza H1N1: collaborative study to evaluate a candidate WHO International Standard. Vaccine. 2012; 30(2): 210–7. https://doi.org/10.1016/j.vaccine.2011.11.019
- Zacour М., Ward В.J., Brewer A., Tang P., Boivin G., Li Y. Standardization of hemagglutination inhibition assay for influenza serology allows for high reproducibility between laboratories. Clin. Vaccine Immunol. 2016; 23(3): 236–42. https://doi.org/10.1128/CVI.00613-15
- The Francis Crick Institute. Worldwide Influenza Centre lab. Annual and interim reports. Available at: https://www.crick.ac.uk/research/platforms-and-facilities/worldwide-influenza-centre/annual-and-interim-reports
- DuPai C.D., McWhite C.D., Smith C.B., Garten R., Maurer-Stroh S., Wilke C.O. Influenza passaging annotations: what they tell us and why we should listen. Virus Evol. 2019; 5(1): vez016. https://doi.org/10.1093/ve/vez016
- Wu N.C., Zost S.J., Thompson A.J., Oyen D., Nycholat C.M., McBride R., et al. A structural explanation for the low effectiveness of the seasonal influenza H3N2 vaccine. PLoS Pathog. 2017; 13(10): e1006682. https://doi.org/10.1371/journal.ppat.1006682
- Park Y.W., Kim Y.H., Jung H.U., Jeong O.S., Hong E.J., Kim H. Comparison of antigenic mutation during egg and cell passage cultivation of H3N2 influenza virus. Clin. Exp. Vaccine Res. 2020; 9(1): 56–63. https://doi.org/10.7774/cevr.2020.9.1.56
- Popova L., Smith K., West A.H., Wilson P.C., James J.A., Thompson L.F. Immunodominance of antigenic site B over site A of hemagglutinin of recent H3N2 influenza viruses. PLoS One. 2012; 7(7): e41895. https://doi.org/10.1371/journal.pone.0041895
- Klein N.P., Fireman B., Goddard K., Zerbo O., Asher J., Zhou J. Vaccine effectiveness of cell-culture relative to egg-based inactivated influenza vaccine during the 2017-2018 influenza season. PLoS One. 2020; 15(2): e0229279. https://doi.org/10.1371/journal.pone.0229279
- GISAID. Eurosurveillance; 2017. Available at: https://gisaid.org/resources/commentary-on-gisaid/
- Smith T.F., Waterman M.S. Identification of common molecular subsequences. J. Mol. Biol. 1981; 147(1): 195–7. https://doi.org/10.1016/0022-2836(81)90087-5
- GetArea. Available at: http://curie.utmb.edu/getarea.html
- RCSB PDB: Homepage. Available at: https://www.rcsb.org/
- Shcherbinin D.N., Alekseeva S.V., Shmarov M.M., Smirnov Yu.A., Naroditskiy B.S., Gintsburg A.L. The analysis of B-cell epitopes of influenza virus hemagglutinin. Acta Naturae. 2016; 8(1): 13–20. https://doi.org/10.32607/20758251-2016-8-1-13-20 https://elibrary.ru/vsnklb
- A standardised numbering for all subtypes of Influenza A hemaggluttin (HA) sequences based on the mature HA sequence. Available at: https://antigenic-cartography.org/surveillance/evergreen/HAnumbering/
- Smith D.J., Forrest S., Hightower R.R., Perelson A.S. Deriving shape space parameters from immunological data. J. Theor. Biol. 1997; 189(2): 141–50. https://doi.org/10.1006/jtbi.1997.0495
- Kilbourne E.D., ed. The Influenza Viruses and Influenza. London: Academic Press Inc.; 1975.
补充文件
