Exosomes in the life cycle of viruses and the pathogenesis of viral infections

Cover Page

Cite item

Abstract

Exosomes are extracellular vesicles of endosomal origin, with a bilayer membrane, 30–160 nm in diameter. Exosomes are released from cells of different origins and are detected in various body fluids. They contain nucleic acids, proteins, lipids, metabolites and can transfer the contents to recipient cells. Exosome biogenesis involves cellular proteins of the Rab GTPase family and the ESCRT system, which regulate budding, vesicle transport, molecule sorting, membrane fusion, formation of multivesicular bodies and exosome secretion. Exosomes are released from cells infected with viruses and may contain viral DNA and RNA, as well as mRNA, microRNA, other types of RNA, proteins and virions. Exosomes are capable of transferring viral components into uninfected cells of various organs and tissues. This review analyzes the impact of exosomes on the life cycle of widespread viruses that cause serious human diseases: human immunodeficiency virus (HIV-1), hepatitis B virus, hepatitis C virus, SARS-CoV-2. Viruses are able to enter cells by endocytosis, use molecular and cellular pathways involving Rab and ESCRT proteins to release exosomes and spread viral infections. It has been shown that exosomes can have multidirectional effects on the pathogenesis of viral infections, suppressing or enhancing the course of diseases. Exosomes can potentially be used in noninvasive diagnostics as biomarkers of the stage of infection, and exosomes loaded with biomolecules and drugs - as therapeutic agents. Genetically modified exosomes are promising candidates for new antiviral vaccines.

About the authors

Alla A. Kushch

National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation

Author for correspondence.
Email: vitallku@mail.ru
ORCID iD: 0000-0002-3396-5533
SPIN-code: 6964-1715

Dr. Sci. (Biology), Professor, Leading Researcher

Russian Federation, 123098, Moscow

Alexandr V. Ivanov

Institute of Molecular Biology named after V.A. Engelhardt of Russian Academy of Sciences

Email: aivanov@yandex.ru
ORCID iD: 0000-0002-5659-9679
SPIN-code: 5776-5496

Dr. Sci. Biol., Chief Researcher, head of the laboratory of biochemistry of viral infections; deputy director for scientific work

Russian Federation, 119991, Moscow

References

  1. Harding C., Heuser J., Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J. Cell Biol. 1983; 97(2): 329–39. https://doi.org/10.1083/jcb.97.2.329
  2. Pan B.T., Johnstone R.M. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell. 1983; 33(3): 967–78. https://doi.org/10.1016/0092-8674(83)90040-5
  3. Harding C.V., Heuser J.E., Stahl P.D. Exosomes: looking back three decades and into the future. J. Cell Biol. 2013; 200(4): 367–71. https://doi.org/10.1083/jcb.201212113
  4. Johnstone R.M., Adam M., Hammond J.R., Orr L., Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J. Biol. Chem. 1987; 262(19): 9412–20.
  5. Xie S., Zhang Q., Jiang L. Current knowledge on exosome biogenesis, cargo-sorting mechanism and therapeutic implications. Membranes (Basel). 2022; 12(5): 498. https://doi.org/10.3390/membranes12050498
  6. Kowal J., Arras G., Colombo M., Jouve M., Morath J.P., Primdal-Bengtson B., et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl Acad. Sci. USA. 2016; 113(8): E968–77. https://doi.org/10.1073/pnas.1521230113
  7. Wang S., Zhang K., Tan S., Xin J., Yuan Q., Xu H., et al. Circular RNAs in body fluids as cancer biomarkers: the new frontier of liquid biopsies. Mol. Cancer. 2021; 20(1): 13. https://doi.org/10.1186/s12943-020-01298-z
  8. Kalluri R., LeBleu V.S. The biology, function, and biomedical applications of exosomes. Science. 2020; 367(6478): eaau6977. https://doi.org/10.1126/science.aau6977
  9. Zeng Y., Qiu Y., Jiang W., Shen J., Yao X., He X., et al. Biological features of extracellular vesicles and challenges. Front. Cell Dev. Biol. 2022; 10: 816698. https://doi.org/10.3389/fcell.2022.816698
  10. Todd K.V., Tripp R.A. Exosome-mediated human norovirus infection. PLoS One. 2020; 15(8): e0237044. https://doi.org/10.1371/journal.pone.0237044
  11. Kowalczyk A., Wrzecińska M., Czerniawska-Piątkowska E., Kupczyński R. Exosomes – spectacular role in reproduction. Biomed. Pharmacother. 2022; 148: 112752. https://doi.org/10.1016/j.biopha.2022.112752
  12. Lee I., Choi Y., Shin D.U., Kwon M., Kim S., Jung H., et al. Small extracellular vesicles as a new class of medicines. Pharmaceutics. 2023; 15(2): 325. https://doi.org/10.3390/pharmaceutics15020325
  13. Picca A., Guerra F., Calvani R., Coelho-Junior H.J., Bucci C., Marzetti E. Circulating extracellular vesicles: friends and foes in neurodegeneration. Neural. Regen. Res. 2022; 17(3): 534–42. https://doi.org/10.4103/1673-5374.320972
  14. Liu F., Vermesh O., Mani V., Ge T.J., Madsen S.J., Sabour A., et al. The exosome total isolation chip. ACS Nano. 2017; 11(11): 10712–23. https://doi.org/10.1021/acsnano.7b04878
  15. Zhang H., Lyden D. Asymmetric-flow field-flow fractionation technology for exomere and small extracellular vesicle separation and characterization. Nat. Protoc. 2019; 14(4): 1027–53. https://doi.org/10.1038/s41596-019-0126-x
  16. Kang Y.T., Kim Y.J., Bu J., Cho Y.H., Han S.W., Moon B.I. High-purity capture and release of circulating exosomes using an exosome-specific dual-patterned immunofiltration (ExoDIF) device. Nanoscale. 2017; 9(36): 13495–505. https://doi.org/10.1039/c7nr04557c
  17. Pathan M., Fonseka P., Chitti S.V., Kang T., Sanwlani R., Van Deun J., et al. Vesiclepedia 2019: a compendium of RNA, proteins, lipids and metabolites in extracellular vesicles. Nucleic. Acids. Res. 2019; 47(D1): D516–9. https://doi.org/10.1093/nar/gky1029
  18. Sidhom K., Obi P.O., Saleem A. A review of exosomal isolation methods: is size exclusion chromatography the best option? Int. J. Mol. Sci. 2020; 21(18): 6466. https://doi.org/10.3390/ijms21186466
  19. van der Pol E., Sturk A., van Leeuwen T., Nieuwland R., Coumans F. Standardization of extracellular vesicle measurements by flow cytometry through vesicle diameter approximation. J. Thromb. Haemost. 2018; 16(6): 1236–45. https://doi.org/10.1111/jth.14009
  20. Théry C., Witwer K.W., Aikawa E., Alcaraz M.J., Anderson J.D., Andriantsitohaina R., et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles. 2018; 7(1): 1535750. https://doi.org/10.1080/20013078.2018
  21. Mulligan R.J., Yap C.C., Winckler B. Endosomal transport to lysosomes and the trans-Golgi network in neurons and other cells: visualizing maturational flux. Methods Mol. Biol. 2023; 2557: 595–618. https://doi.org/10.1007/978-1-0716-2639-9_36
  22. Krylova S.V., Feng D. The machinery of exosomes: biogenesis, release, and uptake. Int. J. Mol. Sci. 2023; 24(2): 1337. https://doi.org/10.3390/ijms24021337
  23. Homma Y., Hiragi S., Fukuda M. Rab family of small GTPases: an updated view on their regulation and functions. FEBS J. 2021; 288(1): 36–55. https://doi.org/10.1111/febs.15453
  24. Liu G., Yin X.M. The role of extracellular vesicles in liver pathogenesis. Am. J. Pathol. 2022; 192(10): 1358–67. https://doi.org/10.1016/j.ajpath.2022.06.007
  25. Scourfield E.J., Martin-Serrano J. Growing functions of the ESCRT machinery in cell biology and viral replication. Biochem. Soc. Trans. 2017; 45(3): 613–34. https://doi.org/10.1042/BST20160479
  26. Lin C.Y., Urbina A.N., Wang W.H., Thitithanyanont A., Wang S.F. Virus hijacks host proteins and machinery for assembly and budding, with HIV-1 as an example. Viruses. 2022; 14(7): 1528. https://doi.org/10.3390/v14071528
  27. Johnson D.S., Bleck M., Simon S.M. Timing of ESCRT-III protein recruitment and membrane scission during HIV-1 assembly. Elife. 2018; 7: e36221. https://doi.org/10.7554/eLife.36221
  28. Hoffman H.K., Fernandez M.V., Groves N.S., Freed E.O., van Engelenburg S.B. Genomic tagging of endogenous human ESCRT-I complex preserves ESCRT-mediated membrane-remodeling functions. J. Biol. Chem. 2019; 294(44): 16266–81. https://doi.org/10.1074/jbc.RA119.009372
  29. Meusser B., Purfuerst B., Luft F.C. HIV-1 Gag release from yeast reveals ESCRT interaction with the Gag N-terminal protein region. J. Biol. Chem. 2020; 295(52): 17950–72. https://doi.org/10.1074/jbc.RA120.014710
  30. Hadpech S., Moonmuang S., Chupradit K., Yasamut U., Tayapiwatana C. Updating on roles of HIV intrinsic factors: a review of their antiviral mechanisms and emerging functions. Intervirology. 2022; 65(2): 67–79. https://doi.org/10.1159/000519241
  31. Gerber P.P., Cabrini M., Jancic C., Paoletti L., Banchio C., von Bilderling C., et al. Rab27a controls HIV-1 assembly by regulating plasma membrane levels of phosphatidylinositol 4,5-bisphosphate. J. Cell Biol. 2015; 209(3): 435–52. https://doi.org/10.1083/jcb.201409082
  32. Teow S.Y., Nordin A.C., Ali S.A., Khoo A.S. Exosomes in human immunodeficiency virus type I pathogenesis: threat or opportunity? Adv. Virol. 2016; 2016: 9852494. https://doi.org/10.1155/2016/9852494
  33. Chiozzini C., Arenaccio C., Olivetta E., Anticoli S., Manfredi F., Ferrantelli F., et al. Trans-dissemination of exosomes from HIV-1-infected cells fosters both HIV-1 trans-infection in resting CD4+ T lymphocytes and reactivation of the HIV-1 reservoir. Arch. Virol. 2017; 162(9): 2565–77. https://doi.org/10.1007/s00705-017-3391-4
  34. Hayes C.N., Zhang Y., Makokha G.N., Hasan M.Z., Omokoko M.D., Chayama K. Early events in hepatitis B virus infection: From the cell surface to the nucleus. J. Gastroenterol. Hepatol. 2016; 31(2): 302–9. https://doi.org/10.1111/jgh.13175
  35. Lin Y., Wu C., Wang X., Kemper T., Squire A., Gunzer M., et al. Hepatitis B virus is degraded by autophagosome-lysosome fusion mediated by Rab7 and related components. Protein Cell. 2019; 10(1): 60–6. https://doi.org/10.1007/s13238-018-0555-2
  36. Chou S.F., Tsai M.L., Huang J.Y., Chang Y.S., Shih C. The dual role of an ESCRT-0 component HGS in HBV transcription and naked capsid secretion. PLoS Pathog. 2015; 11(10): e1005123. https://doi.org/10.1371/journal.ppat.1005123
  37. Prange R. Hepatitis B virus movement through the hepatocyte: An update. Biol. Cell. 2022; 114(12): 325–48. https://doi.org/10.1111/boc.202200060
  38. Wu Q., Glitscher M., Tonnemacher S., Schollmeier A., Raupach J., Zahn T., et al. Presence of intact hepatitis B virions in exosomes. Cell Mol. Gastroenterol. Hepatol. 2023; 15(1): 237–59. https://doi.org/10.1016/j.jcmgh.2022.09.012
  39. van der Ree M.H., Jansen L., Kruize Z., van Nuenen A.C., van Dort K.A., Takkenberg R.B., et al. Plasma MicroRNA levels are associated with hepatitis B e antigen status and treatment response in chronic hepatitis B patients. J. Infect. Dis. 2017; 215(9): 1421–9. https://doi.org/10.1093/infdis/jix140
  40. Wang D., Huang T., Ren T., Liu Q., Zhou Z., Ge L., et al. Identification of blood exosomal miRNA-1246, miRNA-150-5p, miRNA-5787 and miRNA-8069 as sensitive biomarkers for hepatitis B virus infection. Clin. Lab. 2022; 68(2). https://doi.org/10.7754/Clin.Lab.2021.210415
  41. Ninomiya M., Inoue J., Krueger E.W., Chen J., Cao H., Masamune A., et al. The exosome-associated tetraspanin CD63 contributes to the efficient assembly and infectivity of the hepatitis B virus. Hepatol. Commun. 2021; 5(7): 1238–51. https://doi.org/10.1002/hep4.1709
  42. Kakizaki M., Yamamoto Y., Yabuta S., Kurosaki N., Kagawa T., Kotani A. The immunological function of extracellular vesicles in hepatitis B virus-infected hepatocytes. PLoS One. 2018; 13(12): e0205886. https://doi.org/10.1371/journal.pone.0205886
  43. Wang C., Liu J., Yan Y., Tan Y. Role of exosomes in chronic liver disease development and their potential clinical applications. J. Immunol. Res. 2022; 2022: 1695802. https://doi.org/10.1155/2022/1695802
  44. Bunz M., Ritter M., Schindler M. HCV egress – unconventional secretion of assembled viral particles. Trends Microbiol. 2022; 30(4): 364–78. https://doi.org/10.1016/j.tim.2021.08.005
  45. Kulhanek K.R., Roose J.P., Rubio I. Regulation of the small GTPase Ras and its relevance to human disease. Methods. Mol. Biol. 2021; 2262: 19–43. https://doi.org/10.1007/978-1-0716-1190-6_2
  46. Elgner F., Hildt E., Bender D. Relevance of Rab proteins for the life cycle of hepatitis C virus. Front. Cell Dev. Biol. 2018; 6: 166. https://doi.org/10.3389/fcell.2018.00166
  47. Ahmed I., Akram Z., Iqbal H.M.N., Munn A.L. The regulation of Endosomal Sorting Complex Required for Transport and accessory proteins in multivesicular body sorting and enveloped viral budding – an overview. Int. J. Biol. Macromol. 2019; 127: 1–11. https://doi.org/10.1016/j.ijbiomac.2019.01.015
  48. Corless L., Crump C.M., Griffin S.D., Harris M. Vps4 and the ESCRT-III complex are required for the release of infectious hepatitis C virus particles. J. Gen. Virol. 2010; 91(Pt. 2): 362–72. https://doi.org/10.1099/vir.0.017285-0
  49. Li C., Gao Z., Cui Z., Liu Z., Bian Y., Sun H., et al. Deubiquitylation of Rab35 by USP32 promotes the transmission of imatinib resistance by enhancing exosome secretion in gastrointestinal stromal tumours. Oncogene. 2023; 42(12): 894–910. https://doi.org/10.1038/s41388-023-02600-1
  50. Kumar S., Barouch-Bentov R., Xiao F., Schor S., Pu S., Biquand E., et al. MARCH8 ubiquitinates the hepatitis C virus nonstructural 2 protein and mediates viral envelopment. Cell Rep. 2019; 26(7): 1800–14.e5. https://doi.org/10.1016/j.celrep.2019.01.075
  51. Tamai K., Shiina M., Tanaka N., Nakano T., Yamamoto A., Kondo Y., et al. Regulation of hepatitis C virus secretion by the Hrs-dependent exosomal pathway. Virology. 2012; 422(2): 377–85. https://doi.org/10.1016/j.virol.2011.11.009
  52. Tamai K., Tanaka N., Nakano T., Kakazu E., Kondo Y., Inoue J., et al. Exosome secretion of dendritic cells is regulated by Hrs, an ESCRT-0 protein. Biochem. Biophys. Res. Commun. 2010; 399(3): 384–90. https://doi.org/10.1016/j.bbrc.2010.07.083
  53. Barouch-Bentov R., Neveu G., Xiao F., Beer M., Bekerman E., Schor S., et al. Hepatitis C virus proteins interact with the Endosomal Sorting Complex Required for Transport (ESCRT) machinery via ubiquitination to facilitate viral envelopment. mBio. 2016; 7(6): e01456-16. https://doi.org/10.1128/mBio.01456-16
  54. Younossi Z., Tacke F., Arrese M., Chander Sharma B., Mostafa I., Bugianesi E., et al. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology. 2019; 69(6): 2672–82. https://doi.org/10.1002/hep.30251
  55. Newman L.A., Muller K., Rowland A. Circulating cell-specific extracellular vesicles as biomarkers for the diagnosis and monitoring of chronic liver diseases. Cell Mol. Life Sci. 2022; 79(5): 232. https://doi.org/10.1007/s00018-022-04256-8
  56. Li J., Liu H., Mauer A.S., Lucien F., Raiter A., Bandla H., et al. Characterization of cellular sources and circulating levels of extracellular vesicles in a dietary murine model of nonalcoholic steatohepatitis. Hepatol. Commun. 2019; 3(9): 1235–49. https://doi.org/10.1002/hep4.1404
  57. Shah R., Patel T., Freedman J.E. Circulating extracellular vesicles in human disease. N. Engl. J. Med. 2018; 379(10): 958–66. https://doi.org/10.1056/NEJMra1704286
  58. Ramakrishnaiah V., Thumann C., Fofana I., Habersetzer F., Pan Q., de Ruiter P.E., et al. Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells. Proc. Natl Acad. Sci. USA. 2013; 110(32): 13109–13. https://doi.org/10.1073/pnas.1221899110
  59. Bukong T.N., Momen-Heravi F., Kodys K., Bala S., Szabo G. Exosomes from hepatitis C infected patients transmit HCV infection and contain replication competent viral RNA in complex with Ago2-miR122-HSP90. PLoS Pathog. 2014; 10(10): e1004424. https://doi.org/10.1371/journal.ppat.1004424
  60. Dreux M., Garaigorta U., Boyd B., Décembre E., Chung J., Whitten-Bauer C., et al. Short-range exosomal transfer of viral RNA from infected cells to plasmacytoid dendritic cells triggers innate immunity. Cell Host. Microbe. 2012; 12(4): 558–70. https://doi.org/10.1016/j.chom.2012.08.010
  61. Zhang S., Kodys K., Babcock G.J., Szabo G. CD81/CD9 tetraspanins aid plasmacytoid dendritic cells in recognition of hepatitis C virus-infected cells and induction of interferon-alpha. Hepatology. 2013; 58(3): 940–9. https://doi.org/10.1002/hep.25827
  62. Conde-Vancells J., Rodriguez-Suarez E., Embade N., Gil D., Matthiesen R., Valle M., et al. Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. J. Proteome. Res. 2008; 7(12): 5157–66. https://doi.org/10.1021/pr8004887
  63. Properzi F., Logozzi M., Fais S. Exosomes: the future of biomarkers in medicine. Biomark. Med. 2013; 7(5): 769–78. https://doi.org/10.2217/bmm.13.63
  64. Szabo G., Momen-Heravi F. Extracellular vesicles in liver disease and potential as biomarkers and therapeutic targets. Nat. Rev. Gastroenterol. Hepatol. 2017; 14(8): 455–66. https://doi.org/10.1038/nrgastro.2017.71
  65. Borrelli D.A., Yankson K., Shukla N., Vilanilam G., Ticer T., Wolfram J. Extracellular vesicle therapeutics for liver disease. J. Control. Release. 2018; 273: 86–98. https://doi.org/10.1016/j.jconrel.2018.01.022
  66. Lin D., Reddy V., Osman H., Lopez A., Koksal A.R., Rhadhi S.M., et al. Additional inhibition of Wnt/β-catenin signaling by metformin in DAA treatments as a novel therapeutic strategy for HCV-Infected patients. Cells. 2021; 10(4): 790. https://doi.org/10.3390/cells10040790
  67. McVey M.J., Kuebler W.M. Extracellular vesicles: biomarkers and regulators of vascular function during extracorporeal circulation. Oncotarget. 2018; 9(98): 37229–51. https://doi.org/10.18632/oncotarget.26433
  68. Fendl B., Weiss R., Eichhorn T., Linsberger I., Afonyushkin T., Puhm F., et al. Extracellular vesicles are associated with C-reactive protein in sepsis. Sci. Rep. 2021; 11(1): 6996. https://doi.org/10.1038/s41598-021-86489-4
  69. U.S. National Library of Medicine. Available at: https://clinicaltrials.gov/
  70. Feng Y., Wang A.T., Jia H.H., Zhao M., Yu H. A brief analysis of mesenchymal stem cells as biological drugs for the treatment of Acute-on-Chronic Liver Failure (ACLF): safety and potency. Curr. Stem. Cell Res. Ther. 2020; 15(3): 202–10. https://doi.org/10.2174/1574888X15666200101124317
  71. Qian X., Xu C., Fang S., Zhao P., Wang Y., Liu H., et al. Exosomal microRNAs derived from umbilical mesenchymal stem cells inhibit hepatitis C virus infection. Stem. Cells Transl. Med. 2016; 5(9): 1190–203. https://doi.org/10.5966/sctm.2015-0348
  72. Khatun M., Ray R.B. Mechanisms underlying hepatitis C virus-associated hepatic fibrosis. Cells. 2019; 8(10): 1249. https://doi.org/10.3390/cells8101249
  73. Devhare P.B., Sasaki R., Shrivastava S., Di Bisceglie A.M., Ray R., Ray R.B. Exosome-mediated intercellular communication between hepatitis C virus-infected hepatocytes and hepatic stellate cells. J. Virol. 2017; 91(6): e02225-16. https://doi.org/10.1128/JVI.02225-16
  74. Kim J.H., Lee C.H., Lee S.W. Exosomal transmission of microRNA from HCV replicating cells stimulates transdifferentiation in hepatic stellate cells. Mol. Ther. Nucleic. Acids. 2019; 14: 483–97. https://doi.org/10.1016/j.omtn.2019.01.006
  75. Bruno S., Pasquino C., Herrera Sanchez M.B., Tapparo M., Figliolini F., Grange C., et al. HLSC-derived extracellular vesicles attenuate liver fibrosis and inflammation in a murine model of non-alcoholic steatohepatitis. Mol. Ther. 2020; 28(2): 479–89. https://doi.org/10.1016/j.ymthe.2019.10.016
  76. Chiabotto G., Ceccotti E., Tapparo M., Camussi G., Bruno S. Human liver stem cell-derived extracellular vesicles target hepatic stellate cells and attenuate their pro-fibrotic phenotype. Front. Cell Dev. Biol. 2021; 9: 777462. https://doi.org/10.3389/fcell.2021.777462
  77. Rong X., Liu J., Yao X., Jiang T., Wang Y., Xie F. Human bone marrow mesenchymal stem cells-derived exosomes alleviate liver fibrosis through the Wnt/β-catenin pathway. Stem. Cell Res. Ther. 2019; 10(1): 98. https://doi.org/10.1186/s13287-019-1204-2
  78. Kim J., Lee C., Shin Y., Wang S., Han J., Kim M., et al. sEVs from tonsil-derived mesenchymal stromal cells alleviate activation of hepatic stellate cells and liver fibrosis through miR-486-5p. Mol. Ther. 2021; 29(4): 1471–86. https://doi.org/10.1016/j.ymthe.2020.12.025
  79. Du Z., Wu T., Liu L., Luo B., Wei C. Extracellular vesicles-derived miR-150-5p secreted by adipose-derived mesenchymal stem cells inhibits CXCL1 expression to attenuate hepatic fibrosis. J. Cell Mol. Med. 2021; 25(2): 701–15. https://doi.org/10.1111/jcmm.16119
  80. Chen L., Chen R., Kemper S., Cong M., You H., Brigstock D.R. Therapeutic effects of serum extracellular vesicles in liver fibrosis. J. Extracell. Vesicles. 2018; 7(1): 1461505. https://doi.org/10.1080/20013078.2018.1461505
  81. Bruno S., Chiabotto G., Camussi G. Extracellular vesicles: a therapeutic option for liver fibrosis. Int. J. Mol. Sci. 2020; 21(12): 4255. https://doi.org/10.3390/ijms21124255
  82. Hwang S., Yang Y.M. Exosomal microRNAs as diagnostic and therapeutic biomarkers in non-malignant liver diseases. Arch. Pharm. Res. 2021; 44(6): 574–87. https://doi.org/10.1007/s12272-021-01338-2
  83. Zhou Y., Wang X., Sun L., Zhou L., Ma T.C., Song L., et al. Toll-like receptor 3-activated macrophages confer anti-HCV activity to hepatocytes through exosomes. FASEB J. 2016; 30(12): 4132–40. https://doi.org/10.1096/fj.201600696R
  84. Fasbender F., Widera A., Hengstler J.G., Watzl C. Natural killer cells and liver fibrosis. Front. Immunol. 2016; 7: 19. https://doi.org/10.3389/fimmu.2016.00019
  85. Neviani P., Wise P.M., Murtadha M., Liu C.W., Wu C.H., Jong A.Y., et al. Natural killer-derived exosomal miR-186 inhibits neuroblastoma growth and immune escape mechanisms. Cancer Res. 2019; 79(6): 1151–64. https://doi.org/10.1158/0008-5472.CAN-18-0779
  86. Wang L., Wang Y., Quan J. Exosomes derived from natural killer cells inhibit hepatic stellate cell activation and liver fibrosis. Hum. Cell. 2020; 33(3): 582–9. https://doi.org/10.1007/s13577-020-00371-5
  87. Target Scan Human. Whitehead Institute for Biomedical Research. Available at: http://www.targetscan.org
  88. Wang L., Wang Y., Quan J. Exosomal miR-223 derived from natural killer cells inhibits hepatic stellate cell activation by suppressing autophagy. Mol. Med. 2020; 26(1): 81. https://doi.org/10.1186/s10020-020-00207-w
  89. Ye H.L., Zhang J.W., Chen X.Z., Wu P.B., Chen L., Zhang G. Ursodeoxycholic acid alleviates experimental liver fibrosis involving inhibition of autophagy. Life Sci. 2020; 242: 117175. https://doi.org/10.1016/j.lfs.2019.117175
  90. Zhang Y., Hua L., Lin C., Yuan M., Xu W., Raj D.A., et al. Pien-Tze-Huang alleviates CCl4-induced liver fibrosis through the inhibition of HSC autophagy and the TGF-β1/Smad2 pathway. Front. Pharmacol. 2022; 13: 937484. https://doi.org/10.3389/fphar.2022.937484
  91. Avalos P.N., Forsthoefel D.J. An emerging frontier in intercellular communication: extracellular vesicles in regeneration. Front. Cell Dev. Biol. 2022; 10: 849905. https://doi.org/10.3389/fcell.2022.849905
  92. Verweij F.J., Revenu C., Arras G., Dingli F., et al. Live tracking of inter-organ communication by endogenous exosomes in vivo. Dev. Cell. 2019; 48(4): 573–89.e4. https://doi.org/10.1016/j.devcel.2019.01.004
  93. Matsumoto A., Takahashi Y., Nishikawa M., Sano K., Morishita M., Charoenviriyakul C., et al. Role of phosphatidylserine-derived negative surface charges in the recognition and uptake of intravenously injected B16BL6-derived exosomes by macrophages. J. Pharm. Sci. 2017; 106(1): 168–75. https://doi.org/10.1016/j.xphs.2016.07.022
  94. Wu R., Fan X., Wang Y., Shen M., Zheng Y., Zhao S., et al. Mesenchymal stem cell-derived extracellular vesicles in liver immunity and therapy. Front. Immunol. 2022; 13: 833878. https://doi.org/10.3389/fimmu.2022.833878
  95. Schorey J.S., Harding C.V. Extracellular vesicles and infectious diseases: new complexity to an old story. J. Clin. Invest. 2016; 126(4): 1181–9. https://doi.org/10.1172/JCI81132
  96. Yao Z., Qiao Y., Li X., Chen J., Ding J., Bai L., et al. Exosomes exploit the virus entry machinery and pathway to transmit alpha interferon-induced antiviral activity. J. Virol. 2018; 92(24): e01578-18. https://doi.org/10.1128/JVI.01578-18
  97. Hassanpour M., Rezaie J., Nouri M., Panahi Y. The role of extracellular vesicles in COVID-19 virus infection. Infect. Genet. Evol. 2020; 85: 104422. https://doi.org/10.1016/j.meegid.2020.104422
  98. Earnest J.T., Hantak M.P., Li K., McCray P.B. Jr., Perlman S., Gallagher T. The tetraspanin CD9 facilitates MERS-coronavirus entry by scaffolding host cell receptors and proteases. PLoS Pathog. 2017; 13(7): e1006546. https://doi.org/10.1371/journal.ppat.1006546
  99. Barberis E., Vanella V.V., Falasca M., Caneapero V., Cappellano G., Raineri D., et al. Circulating exosomes are strongly involved in SARS-CoV-2 infection. Front. Mol. Biosci. 2021; 8: 632290. https://doi.org/10.3389/fmolb.2021.632290
  100. Bansal S., Perincheri S., Fleming T., Poulson C., Tiffany B., Bremner R.M., et al. Cutting edge: circulating exosomes with COVID spike protein are induced by BNT162b2 (Pfizer-BioNTech) vaccination prior to development of antibodies: a novel mechanism for immune activation by mRNA vaccines. J. Immunol. 2021; 207(10): 2405–10. https://doi.org/10.4049/jimmunol.2100637
  101. Sur S., Khatun M., Steele R., Isbell T.S., Ray R., Ray R.B. Exosomes from COVID-19 patients carry tenascin-C and fibrinogen-β in triggering inflammatory signals in cells of distant organ. Int. J. Mol. Sci. 2021; 22(6): 3184. https://doi.org/10.3390/ijms22063184
  102. Mills J.T., Schwenzer A., Marsh E.K., Edwards M.R., Sabroe I., Midwood K.S., et al. Airway epithelial cells generate pro-inflammatory tenascin-C and small extracellular vesicles in response to TLR3 stimuli and rhinovirus infection. Front. Immunol. 2019; 10: 1987. https://doi.org/10.3389/fimmu.2019.01987
  103. Gupta A., Madhavan M.V., Sehgal K., Nair N., Mahajan S., Sehrawat T.S., et al. Extrapulmonary manifestations of COVID-19. Nat. Med. 2020; 26(7): 1017–32. https://doi.org/10.1038/s41591-020-0968-3
  104. Kwon Y., Nukala S.B., Srivastava S., Miyamoto H., Ismail N.I., Jousma J., et al. Detection of viral RNA fragments in human iPSC cardiomyocytes following treatment with extracellular vesicles from SARS-CoV-2 coding sequence overexpressing lung epithelial cells. Stem. Cell Res. Ther. 2020; 11(1): 514. https://doi.org/10.1186/s13287-020-02033-7
  105. Wang J., Chen S., Bihl J. Exosome-mediated transfer of ACE2 (Angiotensin-Converting Enzyme 2) from endothelial progenitor cells promotes survival and function of endothelial cell. Oxid. Med. Cell Longev. 2020; 2020: 4213541. https://doi.org/10.1155/2020/4213541
  106. Cocozza F., Névo N., Piovesana E., Lahaye X., Buchrieser J., Schwartz O., et al. Extracellular vesicles containing ACE2 efficiently prevent infection by SARS-CoV-2 Spike protein-containing virus. J. Extracell. Vesicles. 2020; 10(2): e12050. https://doi.org/10.1002/jev2.12050
  107. El-Shennawy L., Hoffmann A.D., Dashzeveg N.K., McAndrews K.M., Mehl P.J., Cornish D., et al. Circulating ACE2-expressing extracellular vesicles block broad strains of SARS-CoV-2. Nat. Commun. 2022; 13(1): 405. https://doi.org/10.1038/s41467-021-27893-2
  108. Ching K.L., de Vries M., Gago J., Dancel-Manning K., Sall J., Rice W.J., et al. ACE2-containing defensosomes serve as decoys to inhibit SARS-CoV-2 infection. PLoS Biol. 2022; 20(9): e3001754. https://doi.org/10.1371/journal.pbio.3001754
  109. Song J.W., Lam S.M., Fan X., Cao W.J., Wang S.Y., Tian H., et al. Omics-driven systems interrogation of metabolic dysregulation in COVID-19 pathogenesis. Cell Metab. 2020; 32(2): 188–202.e5. https://doi.org/10.1016/j.cmet.2020.06.016
  110. Shenoy G.N., Loyall J., Berenson C.S., Kelleher R.J. Jr., Iyer V., Balu-Iyer S.V., et al. Sialic acid-dependent inhibition of T cells by exosomal ganglioside GD3 in ovarian tumor microenvironments. J. Immunol. 2018; 201(12): 3750–8. https://doi.org/10.4049/jimmunol.1801041
  111. Schnaar R.L. The biology of gangliosides. Adv. Carbohydr. Chem. Biochem. 2019; 76: 113–48. https://doi.org/10.1016/bs.accb.2018.09.002
  112. Fantini J., Chahinian H., Yahi N. Leveraging coronavirus binding to gangliosides for innovative vaccine and therapeutic strategies against COVID-19. Biochem. Biophys. Res. Commun. 2021; 538: 132–6. https://doi.org/10.1016/j.bbrc.2020.10.015
  113. Hall M.W., Joshi I., Leal L., Ooi E.E. Immune immunomodulation in coronavirus disease 2019 (COVID-19): strategic considerations for personalized therapeutic intervention. Clin. Infect. Dis. 2022; 74(1): 144–8. https://doi.org/10.1093/cid/ciaa904
  114. Holnthoner W., Bonstingl C., Hromada C., Muehleder S., Zipperle J., Stojkovic S., et al. Endothelial cell-derived extracellular vesicles size-dependently exert procoagulant activity detected by thromboelastometry. Sci. Rep. 2017; 7(1): 3707. https://doi.org/10.1038/s41598-017-03159-0
  115. Balbi C., Burrello J., Bolis S., Lazzarini E., Biemmi V., Pianezzi E., et al. Circulating extracellular vesicles are endowed with enhanced procoagulant activity in SARS-CoV-2 infection. EBioMedicine. 2021; 67: 103369. https://doi.org/10.1016/j.ebiom.2021.103369
  116. Cappellano G., Raineri D., Rolla R., Giordano M., Puricelli C., Vilardo B., et al. Circulating platelet-derived extracellular vesicles are a hallmark of SARS-Cov-2 infection. Cells. 2021; 10(1): 85. https://doi.org/10.3390/cells10010085
  117. Tahyra A.S.C., Calado R.T., Almeida F. The role of extracellular vesicles in COVID-19 pathology. Cells. 2022; 11(16): 2496. https://doi.org/10.3390/cells11162496
  118. Yang C.W., Chen R.D., Zhu Q.R., Han S.J., Kuang M.J. Efficacy of umbilical cord mesenchymal stromal cells for COVID-19: A systematic review and meta-analysis. Front. Immunol. 2022; 13: 923286. https://doi.org/10.3389/fimmu.2022.923286
  119. Tan M.I., Alfarafisa N.M., Septiani P., Barlian A., Firmansyah M., Faizal A., et al. Potential cell-based and cell-free therapy for patients with COVID-19. Cells. 2022; 11(15): 2319. https://doi.org/10.3390/cells11152319
  120. Bari E., Ferrarotti I., Saracino L., Perteghella S., Torre M.L., Richeldi L., et al. Mesenchymal stromal cell secretome for post-COVID-19 pulmonary fibrosis: a new therapy to treat the long-term lung sequelae? Cells. 2021; 10(5): 1203. https://doi.org/10.3390/cells10051203
  121. Gardin C., Ferroni L., Chachques J.C., Zavan B. Could mesenchymal stem cell-derived exosomes be a therapeutic option for critically ill COVID-19 patients? J. Clin. Med. 2020; 9(9): 2762. https://doi.org/10.3390/jcm9092762
  122. Perets N., Hertz S., London M., Offen D. Intranasal administration of exosomes derived from mesenchymal stem cells ameliorates autistic-like behaviors of BTBR mice. Mol. Autism. 2018; 9: 57. https://doi.org/10.1186/s13229-018-0240-6
  123. Elahi F.M., Farwell D.G., Nolta J.A., Anderson J.D. Preclinical translation of exosomes derived from mesenchymal stem/stromal cells. Stem. Cells. 2020; 38(1): 15–21. https://doi.org/10.1002/stem.3061
  124. Allan D., Tieu A., Lalu M., Burger D. Mesenchymal stromal cell-derived extracellular vesicles for regenerative therapy and immune modulation: Progress and challenges toward clinical application. Stem. Cells Transl. Med. 2020; 9(1): 39–46. https://doi.org/10.1002/sctm.19-0114
  125. Dinh P.C., Paudel D., Brochu H., Popowski K.D., Gracieux M.C., Cores J., et al. Inhalation of lung spheroid cell secretome and exosomes promotes lung repair in pulmonary fibrosis. Nat. Commun. 2020; 11(1): 1064. https://doi.org/10.1038/s41467-020-14344-7
  126. Cocozza F., Névo N., Piovesana E., Lahaye X., Buchrieser J., Schwartz O., et al. Extracellular vesicles containing ACE2 efficiently prevent infection by SARS-CoV-2 Spike protein-containing virus. J. Extracell. Vesicles. 2020; 10(2): e12050. https://doi.org/10.1002/jev2.12050
  127. Inal J.M. Decoy ACE2-expressing extracellular vesicles that competitively bind SARS-CoV-2 as a possible COVID-19 therapy. Clin. Sci. (Lond). 2020; 134(12): 1301–4. https://doi.org/10.1042/CS20200623
  128. Askenase P.W. COVID-19 therapy with mesenchymal stromal cells (MSC) and convalescent plasma must consider exosome involvement: Do the exosomes in convalescent plasma antagonize the weak immune antibodies? J. Extracell. Vesicles. 2020; 10(1): e12004. https://doi.org/10.1002/jev2.12004
  129. Rezabakhsh A., Mahdipour M., Nourazarian A., Habibollahi P., Sokullu E., Avci Ç.B., et al. Application of exosomes for the alleviation of COVID-19-related pathologies. Cell Biochem. Funct. 2022; 40(5): 430–8. https://doi.org/10.1002/cbf.3720
  130. Sengupta V., Sengupta S., Lazo A., Woods P., Nolan A., Bremer N. Exosomes derived from bone marrow mesenchymal stem cells as treatment for severe COVID-19. Stem. Cells Dev. 2020; 29(12): 747–54. https://doi.org/10.1089/scd.2020.0080
  131. Kuate S., Cinatl J., Doerr H.W., Uberla K. Exosomal vaccines containing the S protein of the SARS coronavirus induce high levels of neutralizing antibodies. Virology. 2007; 362(1): 26–37. https://doi.org/10.1016/j.virol.2006.12.011
  132. Sharma K., Koirala A., Nicolopoulos K., Chiu C., Wood N., Britton P.N. Vaccines for COVID-19: Where do we stand in 2021? Paediatr. Respir. Rev. 2021; 39: 22–31. https://doi.org/10.1016/j.prrv.2021.07.001
  133. Wang Z., Popowski K.D., Zhu D., de Juan Abad B.L., Wang X., Liu M., et al. Exosomes decorated with a recombinant SARS-CoV-2 receptor-binding domain as an inhalable COVID-19 vaccine. Nat. Biomed. Eng. 2022; 6(7): 791–805. https://doi.org/10.1038/s41551-022-00902-5
  134. Altan-Bonnet N. Extracellular vesicles are the Trojan horses of viral infection. Curr. Opin. Microbiol. 2016; 32: 77–81. https://doi.org/10.1016/j.mib.2016.05.004
  135. Badierah R.A., Uversky V.N., Redwan E.M. Dancing with Trojan horses: an interplay between the extracellular vesicles and viruses. J. Biomol. Struct. Dyn. 2021; 39(8): 3034–60. https://doi.org/10.1080/07391102.2020.1756409
  136. Sun L., Wang X., Zhou Y., Zhou R.H., Ho W.Z., Li J.L. Exosomes contribute to the transmission of anti-HIV activity from TLR3-activated brain microvascular endothelial cells to macrophages. Antiviral. Res. 2016; 134: 167–71. https://doi.org/10.1016/j.antiviral.2016.07.013
  137. Welch J.L., Kaddour H., Schlievert P.M., Stapleton J.T., Okeoma C.M. Semen exosomes promote transcriptional silencing of HIV-1 by disrupting NF-κB/Sp1/Tat circuitry. J. Virol. 2018; 92(21): e00731-18. https://doi.org/10.1128/JVI.00731-18
  138. Chen J., Li C., Li R., Chen H., Chen D., Li W. Exosomes in HIV infection. Curr. Opin. HIV AIDS. 2021; 16(5): 262–70. https://doi.org/10.1097/COH.0000000000000694
  139. Abraham A., Krasnodembskaya A. Mesenchymal stem cell-derived extracellular vesicles for the treatment of acute respiratory distress syndrome. Stem. Cells. Transl. Med. 2020; 9(1): 28–38. https://doi.org/10.1002/sctm.19-0205
  140. Popowski K.D., Dinh P.C., George A., Lutz H., Cheng K. Exosome therapeutics for COVID-19 and respiratory viruses. View (Beijing). 2021; 2(3): 20200186. https://doi.org/10.1002/VIW.20200186
  141. Rangel-Ramírez V.V., González-Sánchez H.M., Lucio-García C. Exosomes: from biology to immunotherapy in infectious diseases. Infect. Dis. (Lond). 2023; 55(2): 79–107. https://doi.org/10.1080/23744235.2022.2149852

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Exosome biomarkers and content. In the upper half are the main markers of exosomes: membrane proteins – tetraspanins CD9, CD63, CD81 and flotillins; lipids – ceramides, components of the ESCRT system Alix и TSG101. In the lower half – viral components that are captured by exosomes in infected cells – DNA or RNA, viral structural and non-structural proteins and virions.

Download (103KB)
3. Fig. 2. Scheme of exosome biogenesis and participation of cellular proteins of Rab family. Molecules and microparticles that penetrate into the cell by endocytosis are conventionally designated as a green triangle and a yellow circle. Rab5 participates in the fusion of endocytized vesicles to form an early endosome (EE); Rab5 and Rab4 – to the late endosome (LE); Rab1 regulates transport from the endoplasmic reticulum (ER) to the Golgi complex (GC). Rab2, on the contrary, participates in recycling and retrograde transport from GC back to ER. Rab6 regulates movements within GC. Rab7 regulates endosomal transport from LE and multivesicular bodies (MVB) to the lysosome. Rab4 and Rab11, as well as Rab 9 and Rab 25 regulate the processing of contents in recycling endosomes (RCE) and transport to the plasma membrane (PM). Rab27a and Rab35 are involved in the docking of MVB with the plasma membrane; Rab 11 and Rab35 are involved in the release of vesicles. Rab5a and Rab9a are also involved in the secretion of vesicles, enhancing the release of exosomes.

Download (162KB)
4. Fig. 3. Schematic representation of hepatitis C virus transmission through exosomes. Exosomes containing HCV RNA in combination with microRNA (miR-122], heat shock protein HSP90 and argonaute-2 protein (Ago2) were found in the blood sera of patients with hepatitis C. Exosomes are able to penetrate uninfected cells, including hepatocytes, by endocytosis. In hepatocytes that have captured exosomes containing viral RNA, a productive HCV infection is observed, which can be transmitted through viral particles in the released exosomes. Thus, the spread of the virus is possible through exosomes, bypassing cellular receptors. NC – HCV nucleocapsid, ER – endoplasmic reticulum, GC – Golgi complex, MVB – multivesicular bodies, сосуд – vessel, экзосомы – exosomes, гепатоцит – hepatocyte, ядро – nucleus, эндоцитоз – endocytosis, экзоцитоз – exocytosis (аccording to T.N. Bukong, et al. [59]).

Download (140KB)
5. Fig. 4. Exosomes from natural killer (NK) cells reduce the level of experimental liver fibrosis. Inactive human hepatic stellate cells of the LX-2 line were activated with TGF-β1 and then treated with exosomes isolated from NK cells – NK-Exo exosomes. As a result, human liver stellate cells activity was suppressed. The injection of NK-Exo into mice with experimentally induced fibrosis led to a decrease in the level of fibrosis. The antifibrotic effect of NK-Exo was associated with a high level of miR-223 expression directed at the autophagy protein ATG7 and suppression of its function. The blockade of autophagy caused a decrease in the level of liver fibrosis (according to L. Wang, et al. [86, 88]).

Download (110KB)
6. Fig. 5. Exosomes in the pathogenesis of COVID-19: a – exosomes secreted by cells infected with SARS-CoV-2 are enriched with tenascin-C (TNC) and fibrinogen-β (FGB) and, penetrating into hepatocytes, initiate the production of TNF-α, IL-6 and CCL5 in hepatocytes (according to S. Sur, et al. [101]); b – exosomes containing SARS-CoV-2 genes were introduced into the culture of cardiomyocytes and the expression of viral genes and a significant increase in the expression of proinflammatory cytokines and chemokines were observed in cardiomyocytes (according to Y. Kwon, et al. [104]; c – cell receptor ACE2 interacts with the receptor-binding domain (RBD) of SARS-CoV-2 S protein, causing cell infection (left); exosomes containing ACE2 were found in the blood of patients with COVID-19. They competed with the ACE2 cell receptor, blocking the binding of S protein to cells and neutralizing the infectious activity of the virus (right) (according to L. El-Shennawy, et al. [107]); d – in the blood sera of patients with COVID-19, an increase in the number of exosomes carrying GM3 gangliosides on the surface was found. The presence of GM3-exosomes was accompanied by an increase in C-reactive protein (CRP), interleukin 6 (IL-6) and ESR rate, a decrease in the number of CD4+ cells, and also correlated with the severity of the disease (according to J.W. Song et al. [109]); e – exosomes released from endothelial cells and platelets into circulation of patients with COVID-19 contain active CD142 molecules and have increased pro-inflammatory and procoagulant activity, directly related to the severity of the disease (according to W. Holnthoner, et al. [114] and C. Balbi, et al. [115]).

Download (335KB)
7. Fig. 6. Schematic representation of the preparation and effects of the inhaled vaccine against SARS-CoV-2. S protein SARS-CoV-2 contains a receptor binding domain (RBD). Recombinant protein RBD (rRBD) has been prepared. Human lung cells were obtained by minimal invasive biopsy and three-dimensional cultivation, from which exosomes were isolated. The exosomes were conjugated with rRBD, which was localized on the membrane of the exosome. Exosomes were injected into mice and hamsters by inhalation. In mice, the exosomal vaccine induced the induction of IgG and mucosal IgA anti–RBD antibodies, an increase in the number of CD4+ and CD8+ cells, and virus clearance after infection with SARS-CoV-2. In hamsters, the vaccine weakened severe pneumonia caused by coronavirus (Adapted with modification from Z. Wang, et al. [186]).

Download (116KB)

Copyright (c) 2023 Kushch A.A., Ivanov A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».