In vitro activity of human recombinant interferon gamma against SARS-CoV-2 virus

Cover Page

Cite item

Full Text

Abstract

Introduction. The development of drugs against SARS-CoV-2 continues to be crucial for reducing the spread of infection and associated mortality.

The aim of the work is to study the neutralization of the SARS-CoV-2 virus with interferon gamma preparations in vitro.

Materials and methods. The activity of recombinant human interferon gamma for intramuscular and subcutaneous administration of 500,000 IU and for intranasal administration of 100,000 IU against the SARS-CoV-2 virus in vitro was studied. The methodological approach of this study is based on the phenomenon of a decrease in the number of plaques formed under the action of a potential antiviral drug.

Results. The antiviral activity of recombinant interferon gamma has been experimentally confirmed, both in preventive and therapeutic application schemes. The smallest number of plaques was observed with the preventive scheme of application of the tested object at concentrations of 1000 and 333 IU/ml. The semi-maximal effective concentration (EC50) with the prophylactic regimen was 24 IU/ml.

Discussion. The preventive scheme of application of the tested object turned out to be more effective than therapeutic one, which is probably explained by the launch of the expression of various interferon-stimulated genes that affect to a greater extent the steps of virus entry into the cell and its reproduction.

Conclusion. Further study of the effect of drugs based on recombinant interferon gamma on the reproduction of the SARS-CoV-2 virus for clinical use for prevention and treatment is highly relevant.

About the authors

Yu. V. Nikolaeva

Smorodintsev research Institute of Influenza WHO National Influenza Centre of Russia

Email: svberns@yandex.ru
ORCID iD: 0000-0001-6396-3144

Junior Research Scientist

Russian Federation, 197376, St. Petersburg

A. V. Galochkina

Smorodintsev research Institute of Influenza WHO National Influenza Centre of Russia

Email: svberns@yandex.ru
ORCID iD: 0000-0002-3208-8006

PhD (Biol.), Leading Research Scientist

Russian Federation, 197376, St. Petersburg

A. A. Shtro

Smorodintsev research Institute of Influenza WHO National Influenza Centre of Russia

Email: svberns@yandex.ru
ORCID iD: 0000-0002-2295-1881

PhD (Biol.), Leading Research Scientist, Head of Laboratory of Chemotherapy for Viral Infections

Russian Federation, 197376, St. Petersburg

S. A. Berns

National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Health of the Russian Federation

Author for correspondence.
Email: svberns@yandex.ru
ORCID iD: 0000-0003-1002-1895

Dr Sci. (Med.), Professor, Head of the Department for the Study of Pathogenetic Aspects of Aging, Professor of the Department of Therapy and General Medical Practice

Russian Federation, 101990, Moscow

References

  1. Nikiforov V.V., Suranova T.G., Chernobrovkina T.Ya., Yankovskaya Ya.D., Burova S.V. New coronavirus infection (COVID-19): clinical and epidemiological aspects. Arkhiv” vnutrenney meditsiny. 2020; 10(2): 87–93. https://doi.org/10.20514/2226-6704-2020-10-2-87-93 (in Russian)
  2. Li G., De Clercq E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat. Rev. Drug Discov. 2020; 19(3): 149–50. https://doi.org/10.1038/d41573-020-00016-0
  3. Lythgoe M.P., Rhodes C.J., Ghataorhe P., Attard M., Wharton J., Wilkins M.R. Why drugs fail in clinical trials in pulmonary arterial hypertension, and strategies to succeed in the future. Pharmacol Ther. 2016; 164: 195–203. https://doi.org/10.1016/j.pharmthera.2016.04.012
  4. Lythgoe M.P., Middleton P. Ongoing Clinical Trials for the Management of the COVID-19 Pandemic. Trends Pharmacol. Sci. 2020; 41(6): 363–82. https://doi.org/10.1016/j.tips.2020.03.006
  5. Xu X., Chen P., Wang J., Feng J., Zhou H., Li X., et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci. China Life Sci. 2020; 63(3): 457–60. https://doi.org/10.1007/s11427-020-1637-5
  6. Loginova S.Ya., Shchukina V.N., Savenko S.V., Borisevich S.V. Antiviral activity of Kagocel® in vitro against virus SARS-COV-2. Antibiotiki i khimioterapiya. 2020; (3-4): 3–6. https://doi.org/10.37489/0235-2990-2020-65-3-4-3-6 (in Russian)
  7. Sologub T.V., Tsvetkov V.V. Kagocel in the therapy of influenza and acute respiratory viral infections: data analysis and systematization from the results of preclinical and clinical trials. Terapevticheskiy arkhiv. 2017; 89(8): 113–9. https://doi.org/10.17116/terarkh2017898113-119 (in Russian)
  8. Ershov F.I., Narovlyanskiy A.N. Theoretical and applied aspects of the interferon system: to the 60th anniversary of the discovery of interferons. Voprosy virusologii. 2018; 63(1): 10–8. https://doi.org/10.18821/0507-4088-2018-63-1-10-18 (in Russian)
  9. Sallard E., Lescure F.X., Yazdanpanah Y., Mentre F., Peiffer-Smadja N. Type 1 interferons as a potential treatment against COVID-19. Antiviral. Res. 2020; 178: 104791. https://doi.org/10.1016/j.antiviral.2020.104791.2020.104791
  10. ClinicalTrials.gov. IFN | COVID-19. Available at: https://clinicaltrials.gov/ct2/results?cond=COVID-19&term=IFN&cntry=&state=&city=&dist=
  11. Nguyen L.S., Ait Hamou Z., Gastli N., Chapuis N., Pène F. Potential role for interferon gamma in the treatment of recurrent ventilator-acquired pneumonia in patients with COVID-19: a hypothesis. Intensive. Care. Med. 2021; 47(5): 619–21. https://doi.org/10.1007/s00134-021-06377-3
  12. Myasnikov A.L., Berns S.A., Zverev K.V., Lartseva O.A., Talyzin P.A. Efficacy of interferon gamma in the prevention of SARS-CoV-2 infection (COVID-19): Results of a prospective controlled trial. Int. J. Biomed. 2020; 10(3): 182–8. https://doi.org/10.21103/Article10(3)_OA1
  13. Myasnikov A.L., Berns S.A., Talyzin P.A., Ershov F.I. Interferon gamma in the treatment of patients with moderate COVID-19. Voprosy virusologii. 2021; 66(1): 47–54. https://doi.org/10.36233/0507-4088-24 (in Russian)
  14. Fenimore J., A Young H. Regulation of IFN-γ expression. Adv. Exp. Med. Biol. 2016; 941: 1–19. https://doi.org/10.1007/978-94-024-0921-5_1
  15. Naylor S.L., Sakaguchi A.Y., Shows T.B., Law M.L., Goeddel D.V., Gray P.W. Human immune interferon gene is located on chromosome 12. J. Exp. Med. 1983; 157(3): 1020–7. https://doi.org/10.1084/jem.157.3.1020
  16. Wang W., Xu L., Su J., Peppelenbosch M.P., Pan Q. Transcriptional regulation of antiviral interferon-stimulated genes. Trends Microbiol. 2017; 25(7): 573–84. https://doi.org/10.1016/j.tim.2017.01.001
  17. State Register of Medicines.Instructions for medical use of the drug Ingaron® (lyophilisate for solution for intranasal administration). LS-001330. Available at: https://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=1da1813c-550d-44ed-a024-da492e704a4c&t= (in Russian)
  18. Jorgovanovic D., Song M., Wang L., Zhang Y. Roles of IFN-γ in tumor progression and regression: a review. Biomark. Res. 2020; 8: 49. https://doi.org/10.1186/s40364-020-00228-x
  19. Lin F., Young H.A. Interferon-Gamma. In: Choi S., ed. Encyclopedia of Signaling Molecules. New York: Springer; 2012. https://doi.org/10.1007/978-3-319-67199-4
  20. Schroder K., Hertzog P.J., Ravasi T., Hume D.A. Interferon-gamma: an overview of signals, mechanisms and functions. J. Leukoc. Biol. 2004; 75(2): 163–89. https://doi.org/10.1189/jlb.0603252
  21. Flaishon L., Topilski I., Shoseyov D., Hershkoviz R., Fireman E., Levo Y., et al. Cutting edge: anti-inflammatory properties of low levels of IFN-gamma. J. Immunol. 2002; 168(8): 3707–11. https://doi.org/10.4049/jimmunol.168.8.3707
  22. Mühl H., Pfeilschifter J. Anti-inflammatory properties of pro-inflammatory interferon-gamma. Int. Immunopharmacol. 2003; 3(9): 1247–55. https://doi.org/10.1016/s1567-5769(03)00131-0
  23. Zhang J. Yin and yang interplay of IFN-gamma in inflammation and autoimmune disease. J. Clin. Invest. 2007; 117(4): 871–3. https://doi.org/10.1172/jci31860
  24. State Register of Medicines.Instructions for medical use of the drug Ingaron® (lyophilizate for the preparation of a solution for intramuscular and subcutaneous administration). LS-000924. Available at: https://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=ff3b8627-3782-4923-acfe-33d550db611e&t= (in Russian)
  25. Guidelines for Conducting Preclinical Studies of Drugs. Part One [Rukovodstvo po provedeniyu doklinicheskikh issledovaniy lekarstvennykh sredstv. Chast’ pervaya]. Moscow: Grif I K; 2012. (in Russian)
  26. Decision of the EAC Council № 89 «On Approval of the Rules for Conducting Research on Biological Medicinal Products of the Eurasian Economic Union». Astana; 2016. (in Russian)
  27. Decision of the EAC Council № 78 «On the Rules for Registration and Examination of Medicinal Products for Medical Use». Astana; 2016. (in Russian)
  28. Ketlinskiy S.A., Simbirtsev A.S. Cytokines [Tsitokiny]. St. Petersburg: Foliant; 2008. (in Russian)
  29. Lazear H.M., Schoggins J.W., Diamond M.S. Shared and distinct functions of type I and type III interferons. Immunity. 2019; 50(4): 907–23. https://doi.org/10.1016/j.immuni.2019.03.025
  30. Yin X., Riva L., Pu Y., Martin-Sancho L., Kanamune J., Yamamoto Y., et al. MDA5 Governs the innate immune response to SARS-CoV-2 in lung epithelial cells. Cell. Rep. 2021; 34(2): 108628. https://doi.org/10.1016/j.celrep.2020.108628
  31. Hsin F., Chao T.L., Chan Y. R., Kao H.C., Liu W.D., Wang J.T., et al. Distinct inductions of and responses to type I and Type III interferons promote infections in two SARS-CoV-2 isolates. bioRxiv. 2020; Preprint. https://doi.org/10.1101/2020.04.30.071357
  32. Rebendenne A., Valadão A.L.C., Tauziet M., Maarifi G., Bonaventure B., McKellar J., et al. SARS-CoV-2 triggers an MDA-5-dependent interferon response which is unable to control replication in lung epithelial cells. J. Virol. 2021; 95(8): e02415–20. https://doi.org/10.1128/JVI.02415-20
  33. Talyzin P.A., Myasnikov A.L., Berns S.A., Il’ina M.A., Komazov A.A., Lynev V.S., et al. Preventive effectiveness of nasal interferon-gamma among adult volunteers against acute respiratory viral infections, including COVID-19. Immunologiya. 2022; 43(3): 288–300. https://doi.org/10.33029/0206-4952-2022-43-3-288-300 (in Russian)
  34. Myasnikov A.L., Berns S.A., Ershov F.I. Interferon gamma in the treatment of patients with moderate COVID-19. Rossiyskiy meditsinskiy zhurnal. 2020; 26(6): 394–401. https://doi.org/10.36233/0507-4088-24 (in Russian)
  35. Leisman D.E., Ronner L., Pinotti R., Taylor M.D., Sinha P., Calfee C.S., et al. Cytokine elevation in severe and critical COVID-19: a rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes. Lancet Respir. Med. 2020; 8(12): 1233–44. https://doi.org/10.1016/s2213-2600(20)30404-5
  36. Diao B., Wang C., Tan Y., Chen X., Liu Y., Ning L., et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front. Immunol. 2020; 11: 827. https://doi.org/10.3389/fimmu.2020.00827
  37. Zheng M., Gao Y., Wang G., Song G., Liu S., Sun D., et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol. Immunol. 2020; 17(5): 533–5. https://doi.org/10.1038/s41423-020-0402-2
  38. Mateus J., Grifoni A., Tarke A., Sidney J., Ramirez S.I., Dan J.M., et al. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science. 2020; 370(6512): 89–94. https://doi.org/10.1126/science.abd3871

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The results of the analysis of the antiviral activity of the test object: Human recombinant gamma interferon, lyophilisate for the preparation of a solution for intranasal administration 100,000 IU against SARS-CoV-2 in the therapeutic scheme for plaque inhibition.

Download (99KB)
3. Fig. 2. The results of the analysis of the antiviral activity of the test object: Human recombinant gamma interferon, lyophilizate for the preparation of a solution for intranasal administration of 100,000 IU against SARS-CoV-2 in the prophylactic scheme for the inhibition of plaque formation.

Download (102KB)
4. Fig. 3. The result of evaluating the effect on plaque formation inhibition upon infection of a cell monolayer with SARS-CoV-2 at a dose of 100 TCID50 (3 × 10 PFU) in a prophylactic regimen.

Download (154KB)
5. Fig. 4. The result of evaluating the effect on plaque formation inhibition when the cell monolayer is infected with SARS-CoV-2 at a dose of 100 TCID50 (3 × 10 PFU) in the therapeutic regimen.

Download (151KB)

Copyright (c) 2023 Nikolaeva Y.V., Galochkina A.V., Shtro A.A., Berns S.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies