Antiviral properties of synthetic histidine derivatives containing membranotropic volumetrical carbocycles in their molecule against SARS-CoV-2 virus in vitro
- 作者: Garaev T.M.1, Grebennikova T.V.1, Avdeeva V.V.2, Lebedeva V.V.1, Larichev V.F.1
-
隶属关系:
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya
- Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences
- 期: 卷 68, 编号 1 (2023)
- 页面: 18-25
- 栏目: ORIGINAL RESEARCH
- URL: https://journals.rcsi.science/0507-4088/article/view/125762
- DOI: https://doi.org/10.36233/0507-4088-147
- ID: 125762
如何引用文章
详细
Introduction. Currently, low molecular-weight compounds are being developed as potential inhibitors of CoVs replication, targeting various stages of the replication cycle, such as major protease inhibitors and nucleoside analogs. Viroporins can be alternative protein targets.
The aim of this study is to identify antiviral properties of histidine derivatives with cage substituents in relation to pandemic strain SARS-CoV-2 in vitro.
Materials and methods. Combination of histidine with aminoadamantane and boron cluster anion [B10H10]2– (compounds I–IV) was carried out by classical peptide synthesis. Compound were identified by modern physicochemical methods. Antiviral properties were studied in vitro on a monolayer of Vero E6 cells infected with SARS-CoV-2 (alpha strain) with simultaneous administration of compounds and virus.
Results. Derivatives of amino acid histidine with carbocycles and boron cluster were synthesized and their antiviral activity against SARS-CoV-2 was studied in vitro. Histidine derivatives with carbocycles and [B10H10]2– have the ability to suppress virus replication. The solubility of substances in aqueous media can be increased due to formation of hydrochloride or sodium salt.
Discussion. 2HCl*H-His-Rim (I) showed some effect of suppressing replication of SARS-CoV-2 at a viral load of 100 doses and concentration 31.2 μg/ml. This is explained by the weakly basic properties of compound I.
Conclusion. The presented synthetic compounds showed moderate antiviral activity against SARS-CoV-2. The obtained compounds can be used as model structures for creating new direct-acting drugs against modern strains of coronaviruses.
作者简介
T. Garaev
National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya
编辑信件的主要联系方式.
Email: tmgaraev@gmail.com
ORCID iD: 0000-0002-3651-5730
PhD in biology, leading researcher of the Laboratory of Molecular Diagnostics
俄罗斯联邦, 123098, MoscowT. Grebennikova
National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya
Email: tmgaraev@gmail.com
ORCID iD: 0000-0002-6141-9361
Corresponding Member of the Russian Academy of Sciences, Professor, Doctor of Biology, Head of the Laboratory of Molecular Diagnostics
俄罗斯联邦, 123098, MoscowV. Avdeeva
Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences
Email: tmgaraev@gmail.com
ORCID iD: 0000-0002-0655-1052
Dr. Sci. (Chem.), leading researcher of the Laboratory of Chemistry of Light Elements and Clusters
俄罗斯联邦, 119991, MoscowV. Lebedeva
National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya
Email: tmgaraev@gmail.com
ORCID iD: 0000-0002-3088-0403
Researcher of the Laboratory of Molecular Diagnostics
俄罗斯联邦, 123098, MoscowV. Larichev
National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya
Email: tmgaraev@gmail.com
ORCID iD: 0000-0001-8262-5650
Doctor of Medicine, Lead Researcher of the Laboratory of Arbovirus Biology and Indication
俄罗斯联邦, 123098, Moscow参考
- Ksiazek T.G., Erdman. D., Goldsmith C.S., Zaki S.R., Peret T., Emery S., et al. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 2003; 348(20): 1953–66. https://doi.org/10.1056/NEJMoa030781
- McIntosh K., Kapikian A.Z., Turner H.C., Hartley J.W., Parrott R.H., Chanock R.M. Seroepidemiologic studies of coronavirus infection in adults and children. Am. J. Epidemiol. 1970; 91(6): 585–92. https://doi.org/10.1093/oxfordjournals.aje.a121171
- Gaunt E.R., Hardie A., Claas E.C.J., Simmonds P., Templeton K.E. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. J. Clin. Microbiol. 2010; 48(8): 2940–7. https://doi.org/10.1128/JCM.00636-10
- Walsh E.E., Shin J.H., Falsey A.R. Clinical impact of human coronaviruses 229E and OC43 infection in diverse adult populations. J. Infect. Dis. 2013; 208(10): 1634–42. https://doi.org/10.1093/infdis/jit393
- Yao N., Wang S.N., Lian J.Q., Sun Y.T., Zhang G.F., Kang W.Z., et al. Clinical characteristics and influencing factors of patients with novel coronavirus pneumonia combined with liver injury in Shaanxi region. Zhonghua Gan Zang Bing Za Zhi. 2020; 28(3): 234–9. https://doi.org/10.3760/cma.j.cn501113-20200226-00070 (in Chinese)
- Hu L.L., Wang W.J., Zhu Q.J., Yang L. Novel coronavirus pneumonia related liver injury: etiological analysis and treatment strategy. Zhonghua Gan Zang Bing Za Zhi. 2020; 28(2): 97–9. https://doi.org/10.3760/cma.j.issn.1007-3418.2020.02.001 (in Chinese)
- Morones J.R., Elechiguerra J.L., Camacho A., Holt K., Kouri J.B., Ramírez J.T., et.al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005; 16(10): 2346–53. https://doi.org/10.1088/0957-4484/16/10/059
- Kim J.S., Kuk E., Yu K.N., Kim J.H., Park S.J., Lee H.J., et al. Antimicrobial effects of silver nanoparticles. Nanomedicine. 2007; 3(1): 95–101. https://doi.org/10.1016/j.nano.2006.12.001
- Brown A.J., Won J.J., Graham R.L., Dinnon K.H. 3rd, Sims A.C., Feng J.Y., et al. Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase. Antirviral Res. 2019; 169: 104541. https://doi.org/10.1016/j.antiviral.2019.104541
- de Wit E., Feldmann F., Cronin J., Jordan R., Okumura A., Thomas T., et al. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc. Natl. Acad. Sci. USA. 2020; 117(12): 6771–6. https://doi.org/10.1073/pnas.1922083117
- Sheahan T.P., Sims A.C., Graham R.L., Menachery V.D., Gralinski L.E., Case J.B., et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci. Transl. Med. 2017; 9(396): eaal3653. https://doi.org/10.1126/scitranslmed.aal3653
- de Wilde A.H., Jochmans D., Posthuma C.C., Zevenhoven-Dobbe J.C., van Nieuwkoop S., Bestebroer T.M., et al. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrob. Agents Chemother. 2014; 58(8): 4875–84. https://doi.org/10.1128/aac.03011-14
- Choy K.T., Wong A.Y., Kaewpreedee P., Sia S.F., Chen D., Hui K.P.Y., et al. Remdesivir, Iopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antivir. Res. 2020; 178: 104786. https://doi.org/10.1016/j.antiviral.2020.104786
- Sanders J.M., Monogue M.L., Jodlowski T.Z., Cutrell J.B. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. JAMA. 2020; 323(18): 1824–36. https://doi.org/10.1001/jama.2020.6019
- Mestres J. The target landscape of N4-hydroxycytidine based on its chemical neighborhood. bioRxiv. 2020. Preprint. https://doi.org/10.1101/2020.03.30.016485v1
- Zhu J., Zhang H., Lin Q., Lyu J., Lu L., Chen H., et al. Progress on SARS-CoV-2 3CLpro Inhibitors: Inspiration from SARS-CoV 3CLpro Peptidomimetics and Small-Molecule Anti-Inflammatory Compounds. Drug Des. Devel. Ther. 2022; 16: 1067–82. https://doi.org/10.2147/DDDT.S359009
- Zhou S., Hill C.S., Sarkar S., Tse L.V., Woodburn B.M.D., Schinazi R.F., et al. β-d-N4-hydroxycytidine inhibits SARS-CoV-2 through lethal mutagenesis but is also mutagenic to mammalian cells. J. Infect. Dis. 2021; 224(3): 415–9. https://doi.org/10.1093/infdis/jiab247
- Parthasarathy K., Lu H., Surya W., Vararattanavech A., Pervushin K., Torres A. Expression and purification of coronavirus envelope proteins using a modified beta-barrel construct. Protein Expr. Purif. 2012; 85(1): 133–41. https://doi.org/10.1016/j.pep.2012.07.005
- Li Y., Surya W., Claudine S., Torres J. Structure of a conserved Golgi complex-targeting signal in coronavirus envelope proteins. J. Biol. Chem. 2014; 289(18): 12535–49. https://doi.org/10.1074/jbc.m114.560094
- Cao Y., Yang R., Lee I., Zhang W., Sun J., Wang W., et al. Characterization of the SARS-CoV-2 E protein: sequence, structure, viroporin, and inhibitors. Protein Sci. 2020; 30(6): 1114–30. https://https://doi.org/10.1002/pro.4075
- Shibnev V.A., Deryabin P.G., Garaev T.M., Finogenova M.P., Botikov A.G., Mishin D.V. Peptide carbocyclic derivatives as inhibitors of the viroporin function of RNA-containing viruses. Bioorganicheskaya khimiya. 2017; 43(5): 491–500. https://doi.org/10.7868/S0132342317050153 (in Russian)
- Garaev T.M., Odnovorov A.I., Grebennikova T.V., Finogenova M.P., Sadykova G.K., Prilipov A.G., et al. Studying the effect of amino acid substitutions in the M2 ion channel of the influenza virus on the antiviral activity of the aminoadamantane derivative in vitro and in silico. Adv. Pharm. Bull. 2021; 11(4): 700–11. https://doi.org/10.34172/apb.2021.079
- Avdeeva V.V., Garaev T.M., Breslav N.V., Burtseva E.I., Grebennikova T.V., Zhdanov A.P., et al. New type of RNA virus replication inhibitor based on decahydro-closo-decaborate anion containing amino acid ester pendant group. J. Biol. Inorg. Chem. 2022; 27(4-5): 421–9. https://doi.org/10.1007/s00775-022-01937-4
- Deryabin P.G., Garaev T.M., Finogenova M.P., Odnovorov A.I. Assessment of the antiviral activity of 2HCl* H-His-Rim compound compared to the anti-influenza drug Arbidol for influenza caused by A/duck/Novosibirsk/56/05 (H5N1)(Influenza A virus, Alphainfluenzavirus, Orthomyxoviridae). Voprosy virusologii. 2019; 64(6): 268–73. https://doi.org/10.36233/0507-4088-2019-64-6-268-273 (in Russian)
- Shibnev V.A., Garaev T.M., Finogenova M.P., Shevchenko E.S., Burtseva E.I. Derivatives of 1-(1-adamantyl)ethylamine and their antiviral activity. Patent RF 2461544 C1; 2011. (in Russian)
- Garaev T.M., Grebennikova T.V., Avdeeva V.V., Malinina E.A., Kuznetsov N.T., Zhizhin K.Yu., et al. Amino acid derivative of decahydrocloso-decaborate anion and its antiviral activity against influenza A virus. Patent RF 2749006 C1; 2020. (in Russian)
- Avdeeva V.V., Garaev T.M., Malinina E.A., Zhizhin K.Yu., Kuznetsov N.T. Peptide carbocyclic derivatives as inhibitors of the viroporin function of RNA-containing viruses. Bioorganicheskaya khimiya. 2017; 43(5): 517–525. https://doi.org/10.7868/S0132342317050153
- Abreu G.E.A., Aguilar M.E.H., Covarrubias D.H., Durán F.R. Amantadine as a drug to mitigate the effects of COVID-19. Med Hypotheses. 2020; 140: 109755. https://doi.org/10.1016/j.mehy.2020.109755
- Yao X., Ye F., Zhang M., Cui C., Huang B., Niu P., et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis. 2020; 71(15): 732–9. https://doi.org/10.1093/cid/ciaa237
- Wilson L., McKinlay C., Gage P., Ewart G. SARS Coronavirus E protein forms cation-selective ion channels. Virology. 2004; 330(1): 322–31. https://doi.org/10.1016/j.virol.2004.09.033
补充文件
