Comparative study of Wuhan-like and omicron-like variants of SARS-CoV-2 in experimental animal models

Cover Image

Cite item

Full Text

Abstract

Introduction. The variability of SARS-CoV-2 appeared to be higher than expected, the emergence of new variants raises concerns.

The aim of the work was to compare the pathogenicity of the Wuhan and BA.1.1/Omicron variants in BALB/c mice and Syrian hamsters.

Materials and methods. The study used strains of SARS-CoV-2: Dubrovka phylogenetically close to Wuhan-Hu-1, and LIA phylogenetically close to Omicron, BALB/c mice, transgenic mice B6.Cg-Tg(K18-ACE2)2Prlmn/HEMI Hemizygous for Tg(K18-ACE2)2Prlmn, Syrian golden hamsters. Animals were infected intranasally, pathogenicity was estimated by a complex of clinical, pathomorphological and virological methods.

Results. Comparative studies of SARS-CoV-2 Dubrovka and LIA strains on animal models demonstrated their heterogeneous pathogenicity. In parallel infection of BALB/c mice with Dubrovka and LIA variants, the infection proceeded without serious clinical signs and lung damage. Infection with the LIA strain resulted to a systemic disease with a high concentration of viral RNA in the lungs and brain tissues of animals. The presence of viral RNA in mice infected with the Dubrovka strain was transient and undetectable in the lungs by day 7 post-infection. Unlike the mouse model, in hamsters, the Dubrovka strain had a greater pathogenicity than the LIA strain. In hamsters infected with the Dubrovka strain lung lesions were more significant, and the virus spread through organs, in particular in brain tissue, was observed. In hamsters infected with the LIA strain virus was not detected in brain tissue.

Conclusion. The study of various variants of SARS-CoV-2 in species initially unsusceptible to SARS-CoV-2 infection is important for monitoring zoonotic reservoirs that increase the risk of spread of new variants in humans.

About the authors

Irina A. Leneva

Mechnikov Research Institute of Vaccines and Sera, Department of Virology

Author for correspondence.
Email: wnyfd385@yandex.ru
ORCID iD: 0000-0002-7755-2714

PhD (Bio.), head of Laboratory of Experimental Virology

Russian Federation, 105064, Moscow

Daria I. Smirnova

Mechnikov Research Institute of Vaccines and Sera, Department of Virology

Email: daria.sm.1995@mail.ru
ORCID iD: 0000-0001-7325-0834

junior researcher, Laboratory of Molecular Virology

Russian Federation, 105064, Moscow

Nadezhda P. Kartashova

Mechnikov Research Institute of Vaccines and Sera, Department of Virology

Email: nadezdakartasova10571@gmail.com
ORCID iD: 0000-0003-2096-5080

researcher, Laboratory of Experimental Virology

Russian Federation, 105064, Moscow

Anastasiia V. Gracheva

Mechnikov Research Institute of Vaccines and Sera, Department of Virology

Email: anastasiia.gracheva.95@mail.ru
ORCID iD: 0000-0001-8428-4482

junior researcher, Laboratory of Molecular Virology

Russian Federation, 105064, Moscow

Anna V. Ivanina

Mechnikov Research Institute of Vaccines and Sera, Department of Virology

Email: ivanina.anna97@mail.ru
ORCID iD: 0000-0002-7289-693X

research laboratory assistant, Laboratory of Experimental Virology

Russian Federation, 105064, Moscow

Ekaterina A. Glubokova

Mechnikov Research Institute of Vaccines and Sera, Department of Virology

Email: eaglubokova@yandex.ru
ORCID iD: 0000-0002-5925-9733

junior researcher, Laboratory of Experimental Virology

Russian Federation, 105064, Moscow

Ekaterina R. Korchevaya

Mechnikov Research Institute of Vaccines and Sera, Department of Virology

Email: c.korchevaya@gmail.com
ORCID iD: 0000-0002-6417-3301

junior researcher, Laboratory of Molecular Virology

Russian Federation, 105064, Moscow

Andrey A. Pancratov

Herzen Moscow Research Institute of Oncology of the Ministry of Health of Russia

Email: andreimnioi@yandex.ru
ORCID iD: 0000-0001-7291-9743

PhD, Head of the Department of Experimental Pharmacology and Toxicology

Russian Federation, 125284, Moscow

Galina V. Trunova

Herzen Moscow Research Institute of Oncology of the Ministry of Health of Russia

Email: gtrunovamnioi@mail.ru
ORCID iD: 0000-0003-2917-4496

PhD, senior researcher of the Department of Experimental Pharmacology and Toxicology

Russian Federation, 125284, Moscow

Varvara A. Khokhlova

Herzen Moscow Research Institute of Oncology of the Ministry of Health of Russia

Email: nostocus@yandex.ru
ORCID iD: 0000-0002-0339-2068

junior researcher of the Department of Experimental Pharmacology and Toxicology

Russian Federation, 125284, Moscow

Oksana A. Svitich

Mechnikov Research Institute of Vaccines and Sera, Department of Virology

Email: svitichoa@yandex.ru
ORCID iD: 0000-0003-1757-8389

D. Sci. (Med.), Prof., Corresponding Member of RAS, Head, Laboratory of molecular immunology, Director

Russian Federation, 105064, Moscow

Vitaly V. Zverev

Mechnikov Research Institute of Vaccines and Sera, Department of Virology

Email: vitalyzverev@outlook.com
ORCID iD: 0000-0001-5808-2246

D. Sci. (Biol.), Prof., Academician of RAS, Head, Laboratory of molecular biotechnology

Russian Federation, 105064, Moscow

Evgeny B. Faizuloev

Mechnikov Research Institute of Vaccines and Sera, Department of Virology

Email: faizuloev@mail.ru
ORCID iD: 0000-0001-7385-5083

PhD (Biol.), Head of Molecular Virology Laboratory

Russian Federation, 105064, Moscow

References

  1. Holmes E.C., Goldstein S.A., Rasmussen A.L., Robertson D.L., Crits-Christoph A., Wertheim J.O., et al. The origins of SARS-CoV-2: A critical review. Cell. 2021; 184(19): 4848–56. https://doi.org/10.1016/j.cell.2021.08.017
  2. Rasmussen A.L. On the origins of SARS-CoV-2. Nat. Med. 2021; 27(1): 9. https://doi.org/10.1038/s41591-020-01205-5
  3. Trinité B., Pradenas E., Marfil S., Rovirosa C., Urrea V., TarrésFreixas F., et al. Previous SARS-CoV-2 infection increases B.1.1.7 cross-neutralization by vaccinated individuals. Viruses. 2021; 13(6): 1135. https://doi.org/10.3390/v13061135
  4. Wang P., Nair M.S., Liu L., Iketani S., Luo Y., Guo Y., et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature. 2021; 593(7857): 130–5. https://doi.org/10.1038/s41586-021-03398-2
  5. Mullen J.L., Tsueng G., Latif A.A., Alkuzweny M., Cano M., Haag E., et al. Center for Viral Systems Biology. Outbreak.info. 2020. Available at: https://outbreak.info/
  6. Wang R., Chen J., Gao K., Hozumi Y., Yin C., Wei G.W. Analysis of SARS-CoV-2 mutations in the United States suggests presence of four substrains and novel variants. Commun. Biol. 2021; 4(1): 228. https://doi.org/10.1038/s42003-021-01754-6
  7. Dejnirattisai W., Zhou D., Supasa P., Liu C., Mentzer A.J., Ginn H.M., et al. Antibody evasion by the P.1 strain of SARS-CoV-2. Cell. 2021; 184(11): 2939–54.e9. https://doi.org/10.1016/j.cell.2021.03.055
  8. Planas D., Bruel T., Grzelak L., Guivel-Benhassine F., Staropoli I., Porrot F., et al. Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies. Nat. Med. 2021; 27(5): 917–24. https://doi.org/10.1038/s41591-021-01318-5
  9. Dhar M.S., Marwal R., Vs R., Ponnusamy K., Jolly B., Bhoyar R.C., et al. Genomic characterization and epidemiology of an emerging SARS-CoV-2 variant in Delhi, India. Science. 2021; 374(6570): 995–9. https://doi.org/10.1126/science.abj9932
  10. Parums D. Editorial: Revised World Health Organization (WHO) terminology for variants of concern and variants of interest of SARS-CoV-2. Med. Sci. Monit. 2021; 27: e933622. https://doi.org/10.12659/MSM.933622
  11. Karim S.S.A., Karim Q.A. Omicron SARS-CoV-2 variant: a new chapter in the COVID-19 pandemic. Lancet. 2021; 398(10317): 2126–8. https://doi.org/10.1016/S0140-6736(21)02758-6
  12. Allen H., Tessier E., Turner C., Anderson C., Blomquist P., Simons D., et al. Comparative transmission of SARS-CoV-2 Omicron (B.1.1.529) and Delta (B.1.617.2) variants and the impact of vaccination: national cohort study, England. medRxiv. 2022. Preprint. https://doi.org/10.1101/2022.02.15.22271001
  13. Lambrou A.S., Shirk P., Steele M.K., Paul P., Paden C.R., Cadwell B., et al. Genomic surveillance for SARS-CoV-2 variants: Predominance of the Delta (B.1.617.2) and omicron (B.1.1.529) variants – United States, June 2021 – January 2022. MMWR Morb. Mortal. Wkly Rep. 2022; 71(6): 206–11. https://doi.org/10.15585/mmwr.mm7106a4
  14. Petersen E., Ntoumi F., Hui D.S., Abubakar A., Kramer L.D., Obiero C., et al. Emergence of new SARS-CoV-2 Variant of Concern Omicron (B.1.1.529) – highlights Africa’s research capabilities, but exposes major knowledge gaps, inequities of vaccine distribution, inadequacies in global COVID-19 response and control efforts. Int. J. Infect. Dis. 2022; 114: 268–72. https://doi.org/10.1016/j.ijid.2021.11.040
  15. Andrews N., Stowe J., Kirsebom F., Toffa S., Rickeard T., Gallagher E., et al. Covid-19 vaccine effectiveness against the omicron (B.1.1.529) variant. N. Engl. J. Med. 2022; 386(16): 1532–46. https://doi.org/10.1056/NEJMoa2119451
  16. Grabowski F., Kochańczyk M., Lipniacki T. The spread of SARS-CoV-2 variant omicron with a doubling time of 2.0-3.3 days can be explained by immune evasion. Viruses. 2022; 14(2): 294. https://doi.org/10.3390/v14020294
  17. Liu L., Iketani S., Guo Y., Chan J.F.W., Wang M., Liu L., et al. Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature. 2022; 602(7898): 676–81. https://doi.org/10.1038/s41586-021-04388-0
  18. Planas D., Saunders N., Maes P., Guivel-Benhassine F., Planchais C., Buchrieser J., et al. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature. 2022; 602(7898): 671–5. https://doi.org/10.1038/s41586-021-04389-z
  19. Conceicao C., Thakur N., Human S., Kelly J.T., Logan L., Bialy D., et al. The SARS-CoV-2 Spike protein has a broad tropism for mammalian ACE2 proteins. PLoS Biol. 2020; 18(12): e3001016. https://doi.org/10.1371/journal.pbio.3001016
  20. Liu Y., Hu G., Wang Y., Ren W., Zhao X., Ji F., et al. Functional and genetic analysis of viral receptor ACE2 orthologs reveals a broad potential host range of SARS-CoV-2. Proc. Natl Acad. Sci. USA. 2021; 118(12): e2025373118. https://doi.org/10.1073/pnas.2025373118
  21. Gretebeck L.M., Subbarao K. Animal models for SARS and MERS coronaviruses. Curr. Opin. Virol. 2015; 13: 123–9. https://doi.org/10.1016/j.coviro.2015.06.009
  22. Garry R.F. Mutations arising in SARS-CoV-2 spike on sustained human-to-human transmission and human-to-animal passage. Virological. 2021. Available at: https://virological.org/t/mutations-arising-in-sars-cov-2-spike-on-sustained-human-to-human-transmission-and-human-to-animal-passage/578/14
  23. Bao L., Deng W., Huang B., Gao H., Liu J., Ren L., et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature. 2020; 583(7818): 830–3. https://doi.org/10.1038/s41586-020-2312-y
  24. Kant R., Kareinen L., Smura T., Freitag T.L., Jha S.K., Alitalo K., et al. Common laboratory mice are susceptible to infection with the SARS-CoV-2 beta variant. Viruses. 2021; 13(11): 2263. https://doi.org/10.3390/v13112263
  25. Montagutelli X., Prot M., Levillayer L., Salazar E.B., Jouvion G., Conquet L., et al. bioRxiv. 2021. Preprint. https://doi.org/10.1101/2021.03.18.436013
  26. Shuai H., Chan J.F.W., Yuen T.T.T., Yoon C., Hu J.C., Wen L., et al. Emerging SARS-CoV-2 variants expand species tropism to murines. EBioMedicine. 2021; 73: 103643. https://doi.org/10.1016/j.ebiom.2021.103643
  27. Zhang Y.N., Zhang Z.R., Zhang H.Q., Li N., Zhang Q.Y., Li X.D., et al. Different pathogenesis of SARS-CoV-2 Omicron variant in wild-type laboratory mice and hamsters. Signal Transduct. Target. Ther. 2022 Feb 25; 7(1): 62. https://doi.org/10.1038/s41392-022-00930-2
  28. Imai M., Iwatsuki-Horimoto K., Hatta M., Loeber S., Halfmann PJ., Nakajima N., et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc. Natl Acad. Sci USA. 2020; 117(28): 16587–95. https://doi.org/10.1073/pnas.2009799117
  29. Gracheva A.V., Korchevaya E.R., Kudryashova A.M., Borisova O.V., Petrusha O.A., Smirnova D.I., et al. Adaptation of the MTT assay for detection of neutralizing antibodies against the SARS-CoV-2 virus. Zhurnal mikrobiologii, epidemiologii i immunobiologii. 2021; 98(3): 253–65. https://doi.org/10.36233/0372-9311-136 (in Russian)
  30. Ramakrishnan M.A. Determination of 50% endpoint titer using a simple formula. World J. Virol. 2016; 5(2): 85–6. https://doi.org/10.5501/wjv.v5.i2.85
  31. Gracheva A.V., Korchevaya E.R., Ammour Y.I., Smirnova D.I., Sokolova O.S., Glukhov G.S., et al. Immunogenic properties of SARS-CoV-2 inactivated by ultraviolet light. Arch. Virol. 2022; 167(11): 2181–91. https://doi.org/10.1007/s00705-022-05530-7
  32. Meng B., Abdullahi A., Ferreira I.A.T.M., Goonawardane N., Saito A., Kimura I., et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature. 2022; 603(7902): 706–14. https://doi.org/10.1038/s41586-022-04474-x
  33. Suzuki R., Yamasoba D., Kimura I., Wang L., Kishimoto M., Ito J., et al. Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant. Nature. 2022; 603(7902): 700–5. https://doi.org/10.1038/s41586-022-04462-1
  34. Kim Y.I., Kim S.G., Kim S.M., Kim E.H., Park S.J., Yu K.M., et al. Infection and rapid transmission of SARS-CoV-2 in ferrets. Cell Host Microbe. 2020; 27(5): 704–9.e2. https://doi.org/10.1016/j.chom.2020.03.023

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Parameters of BALB/c and K18-hACE2 mice infected with Dubrovka and LIA strains: а – the body weight (the line shows the weight value M ± SD); b – survival rate; c – average values of SARS-CoV-2 RNA concentrations in tissues of various organs of BALB/c mice infected with Dubrovka and LIA strains; d – viral titer (lg TCID50/ml) and the concentration of viral RNA (lg copies of RNA/ml) of SARS-CoV-2 Dubrovka strain in the lungs of K18-hACE2 mice on days 4 and 7 days post-infection.

Download (228KB)
3. Fig. 2. Morphological characteristics of the lungs of mock-infected BALB/c (a, b) mice and infected with the Dubrovka strain (Wuhan-like) (c, d): a – the bronchial lumen are free, the organ parenchyma looks airy; b – the alveolar lumen is uniformly airy, the interalveolar septa are thin, the vessels and capillaries with moderately hyperemia; c – the histostructure of the lung corresponds to the variant of the norm; d – a small lymphoid accumulation (bronchoassociated lymphoid tissue) in the area of contact between the bronchus and the blood vessel. Magnifcation: a, c – 40 ×; b – 400 ×; d – 200 ×. Staining: hematoxylin and eosin.

Download (776KB)
4. Fig. 3. Indicators of golden Syrian hamsters infected with Dubrovka and LIA strains: a – body weight (the line shows the weight value M ± SD); b – average values of SARS-CoV-2 RNA concentrations in tissues of various organs.

Download (104KB)
5. Fig. 4. Alterative and inflammatory changes in the lungs of Syrian hamsters on day 4 post-infection with SARS-CoV-2 strain Dubrovka (Wuhan): a – focies of viral pneumonia; b – peribronchial airless focus of pneumonia: bronchial lumen is free; epithelial lining is preserved, weak inflammatory infiltration of the bronchial wall; in the adjacent parenchyma, the interalveolar septa are destroyed due to inflammatory infiltration, edema and death of the respiratory epithelium; с – section of the lung parenchyma with reduced airiness: pronounced perivascular edema, slit-like lumen of the alveoli, in them – exudate fluid, desquamated epithelium, macrophages, erythrocytes, lymphocytes; d – section of the lung parenchyma with reduced airiness: intraalveolar swelling, intraalveolar hemorrhages, thickened interalveolar septa due to lymphohistiocytic infiltration and interstitial swelling, hyperemia of capillaries. Magnifcation: a – 40 ×; с – 200 ×; b, d – 200 ×. Staining: hematoxylin and eosin.

Download (832KB)

Copyright (c) 2022 Leneva I.A., Smirnova D.I., Kartashova N.P., Gracheva A.V., Ivanina A.V., Glubokova E.A., Korchevaya E.R., Pancratov A.A., Trunova G.V., Khokhlova V.A., Svitich O.A., Zverev V.V., Faizuloev E.B.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies