An electron microscopic study of neocortex of Syrian hamsters (Mesocricetus auratus) infected with SARS-CoV-2 (Coronaviridae: Coronavirinae: Betacoronavirus: Sarbecovirus)
- Authors: Paramonova N.M.1,2, Chepur S.V.1, Pervak M.О.1, Myasnikov V.A.1, Tyunin M.A.1, Ilinskiy N.S.1, Kanevskij B.A.1, Smirnova A.V.1
-
Affiliations:
- State Research Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
- Issue: Vol 67, No 5 (2022)
- Pages: 403-413
- Section: ORIGINAL RESEARCH
- URL: https://journals.rcsi.science/0507-4088/article/view/118237
- DOI: https://doi.org/10.36233/0507-4088-130
- ID: 118237
Cite item
Full Text
Abstract
Introduction. Convalescent COVID-19 patients have various signs of central nervous system damage, including those directly associated with SARS-CoV-2. Hence, studies of SARS-COV-2 related morphological changes in neocortex are particularly relevant for understanding the mechanisms of their formation and development of approaches to preclinical evaluation of the effectiveness of antiviral drugs.
The purpose of the research is a longitudinal study of the ultrastructural alterations in Syrian hamsters’ neocortex after experimental SARS-CoV-2 infection.
Materials and methods. Male Syrian hamsters weighing 80–100 g, aged 4 to 6 weeks, were infected with 26 μl SARS-CoV-2 intranasally with 4×104 TCD50/ml of viral particles. The animals were euthanized on days 3, 7 or 28 post-infection, the brain was extracted with the cortex excision. The material analysis was performed using transmission electron microscopy.
Results and discussion. On day 3 post-infection, the number of moderately hyperchromic neurons in neocortex increased, while by the day 7 the number of apoptotic cells significantly increased. Simultaneously, an increased signs of neuronophagy and representation of atypical glia were observed. Increased number of altered oligodendrocytes was observed on day 28 post-infection. Viral invasion was accompanied by changes in neocortical cells since day 3 post-infection, such as transformation of their nucleus, the rough endoplasmic reticulum and the Golgi vesicles as well as microvascular spasm with perivascular edema.
Conclusion. As a result of electron microscopic study, the ultrastructural alterations in neocortex were described in an experimental model of SARS-CoV-2 infection. The findings can be used to identify the mechanisms of infection pathogenesis and to search for the new directions in development of medicines.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Natal’ya M. Paramonova
State Research Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation; Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
Email: gniiivm_2@mil.ru
ORCID iD: 0000-0001-5451-3555
SPIN-code: 2945-3310
Senior researcher
Russian Federation, 195043, Saint Petersburg; 194223, Saint PetersburgSergey V. Chepur
State Research Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation
Email: gniiivm_2@mil.ru
ORCID iD: 0000-0002-7625-2744
SPIN-code: 3828-6730
Dr. Sci. (Med.), Professor, Head of the Institute
Russian Federation, 195043, Saint PetersburgMariya О. Pervak
State Research Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation
Email: gniiivm_7@mil.ru
ORCID iD: 0000-0002-1395-823X
Junior researcher
Russian Federation, 195043, Saint PetersburgVadim A. Myasnikov
State Research Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation
Email: gniiivm_7@mil.ru
ORCID iD: 0000-0001-7232-4678
Cand. Sci. (Med.), Head of the Scientific-Research Department
Russian Federation, 195043, Saint PetersburgMikhail A. Tyunin
State Research Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation
Email: gniiivm_7@mil.ru
ORCID iD: 0000-0002-6974-5583
SPIN-code: 6161-7029
Cand. Sci. (Med.), Vice-head of the Scientific-Research Department
Russian Federation, 195043, Saint PetersburgNikita S. Ilinskiy
State Research Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation
Email: nika_il2@mail.ru
ORCID iD: 0000-0001-7406-753X
SPIN-code: 5511-7800
Deputy Head of the Scientific-Research Department
Russian Federation, 195043, Saint PetersburgBoris A. Kanevskij
State Research Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation
Email: gniiivm_7@mil.ru
ORCID iD: 0000-0002-6255-8232
SPIN-code: 2549-9294
Deputy Head of the Scientific-Research Department
Russian Federation, 195043, Saint PetersburgAnna V. Smirnova
State Research Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation
Author for correspondence.
Email: janis_1@mail.ru
ORCID iD: 0000-0003-0483-5032
SPIN-code: 4897-0219
Researcher
Russian Federation, 195043, Saint PetersburgReferences
- Chepur S.V., Pluzhnikov N.N., Chubar’ O.V., Bakulina L.S., Litvinenko I.V., Makarov V.A., et al. Respiratory RNA viruses: how to prepare for meeting with new pandemic strains. Uspekhi sovremennoy biologii. 2020; 140(4): 359–77. https://doi.org/10.31857/S0042132420040043 (in Russian)
- Machhi J., Herskovitz J., Senan A.M., Dutta D., Nath B., Oleynikov M.D., et al. The Natural History, Pathobiology, and Clinical Manifestations of SARS-CoV-2 Infections. J. Neuroimmune Pharmacol. 2020; 15(3): 359–86. https://doi.org/10.1007/s11481-020-09944-5
- Kharchenko E.P. The coronavirus SARS-CoV-2: the characteristics of structural proteins, contagiousness, and possible immune collisions. Epidemiologiya i vaktsinoprofilaktika. 2020; 19(2): 13–30. https://doi.org/10.31631/2073-3046-2020-19-2-13-30 (in Russian)
- Bruyakin S.D., Makarevich D.A. Structural proteins of the SARS-CoV-2 coronavirus: role, immunogenicity, superantigenic properties and potential use for therapeutic purposes. Vestnik Volgogradskogo gosudarstvennogo meditsinskogo universiteta. 2021; (2): 18–27. https://doi.org/10.19163/1994-9480-2021-2(78)-18-27 (in Russian)
- Pashchenkov M.V., Khaitov M.R. Immune response against epidemic coronaviruses. Immunologiya. 2020; 41(1): 5–18. https://doi.org/10.33029/0206-4952-2020-41-1-5-18 (in Russian)
- Pan Y., Li X., Yang G., Fan J., Tang Y., Zhao J., et al. Serological immunochromatographic approach in diagnosis with SARS-CoV-2 infected COVID-19 patients. J. Infect. 2020; 81(1): e28–32. https://doi.org/10.1016/j.jinf.2020.03.051
- Rodríguez Y., Novelli L., Rojas M., De Santis M., Acosta-Ampudia Y., Monsalve DM., et al. Autoinflammatory and autoimmune conditions at the crossroad of COVID-19. J. Autoimmun. 2020; 114: 102506. https://doi.org/10.1016/j.jaut.2020.102506
- Nalbandian A., Sehgal K., Gupta A., Madhavan M.V., McGroder C., Stevens J.S., et al. (2021). Post-acute COVID-19 syndrome. Nat. Med. 2021; 27(4): 601–15. https://doi.org/10.1038/s41591-021-01283-z
- Mao L., Jin H., Wang M., Hu Y., Chen S., He Q., et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020; 77(6): 683–690. https://doi.org/10.1001/jamaneurol.2020.1127
- Pinna P., Grewal P., Hall J.P., Tavarez T., Dafer R.M., Garg R., et al. Neurological manifestations and COVID-19: Experiences from a tertiary care center at the Frontline. Journal of the neurological sciences. J. Neurol. Sci. 2020; 415: 116969. https://doi.org/10.1016/j.jns.2020.116969
- Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z., et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395(10229): 1054–62. https://doi.org/10.1016/S0140-6736(20)30566-3
- Xiao A.T., Gao C., Zhang S. Profile of specific antibodies to SARS-CoV-2: The first report. J. Infect. 2020; 81(1): 147–78. https://doi.org/10.1016/j.jinf.2020.03.012
- Logunov D.Y., Dolzhikova I.V., Shcheblyakov D.V., Tukhvatulin A.I., Zubkova O.V., Dzharullaeva A.S., et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 2021; 397(10275): 671–81. https://doi.org/10.1016/S0140-6736(21)00234-8
- Jones I., Roy P. Sputnik V COVID-19 vaccine candidate appears safe and effective. Lancet. 2021; 397(10275): 642–3. https://doi.org/10.1016/S0140-6736(21)00191-4
- Dassarma B., Tripathy S., Matsabisa M. Emergence of ancient convalescent plasma (CP) therapy: to manage COVID-19 pandemic. Transfus. Clin. Biol. 2021; 28(1): 123–127. https://doi.org/10.1016/j.tracli.2020.11.004
- Chakraborty C., Sharma A.R., Sharma G., Bhattacharya M., Lee S.S. SARS-CoV-2 causing pneumonia-associated respiratory disorder (COVID-19): diagnostic and proposed therapeutic options. Eur. Rev. Med. Pharmacol. Sci. 2020; 24(7): 4016–26. https://doi.org/10.26355/eurrev_202004_20871
- Wu X., Yu K., Wang Y., Xu W., Ma H., Hou Y., et al. Efficacy and safety of Triazavirin therapy for coronavirus disease 2019: a pilot randomized controlled trial. Engineering (Beijing). 2020; 6(10): 1185–91. https://doi.org/10.1016/j.eng.2020.08.011
- Chan J.F.W., Zhang A.J., Yuan S., Poon V.K.M., Chan C.C.S., Lee A.C.Y., et al. Simulation of the clinical and pathological manifestations of coronavirus disease 2019 (COVID-19) in a golden Syrian hamster model: implications for disease pathogenesis and transmissibility. Clin. Infect. Dis. 2020; 71(9): 2428–46. https://doi.org/10.1093/cid/ciaa325
- TaŞtan C., Yurtsever B., Sir KarakuŞ G., Dİlek KanÇaĞi D., Demİr S., Abanuz S., et al. SARS-CoV-2 isolation and propagation from Turkish COVID-19 patients. Turk. J. Biol. 2020; 44(3): 192–202. https://doi.org/10.3906/biy-2004-113
- Yao P., Zhang Y., Sun Y., Gu Y., Xu F., Su B., et al. Isolation and growth characteristics of SARS-CoV-2 in vero cell. Virol. Sin. 2020; 35(3): 348–50. https://doi.org/10.1007/s12250-020-00241-2
- Reed L.J., Muench H. A simple method of estimating fifty percent endpoints. Am. J. Hygiene. 1938; 27: 493–7. https://doi.org/10.1093/oxfordjournals.aje.a118408
- Makarenko I.E., Avdeeva O.I., Vanatiev G.V., Rybakova A.V., Khod’ko S.V., Makarova M.N., et al. Possible ways of administration and standard drugs in laboratory animals. Mezhdunarodnyy vestnik veterinarii. 2013; (3): 72–84. (in Russian)
- Gayer G., ed. Ultrahistochemie. Stuttgart-New York: Fischer Verlag; 1973. (in German)
- Saraste J., Prydz K. Assembly and cellular exit of coronaviruses: hijacking an unconventional secretory pathway from the pre-Golgi intermediate compartment via the golgi ribbon to the extracellular space. Cells. 2021; 10(3): 503. https://doi.org/10.3390/cells10030503
- Hackstadt T., Chiramel A.I., Hoyt F.H., Williamson B.N., Dooley C.A., Beare P.A., et al. Disruption of the Golgi apparatus and contribution of the endoplasmic reticulum to the SARS-CoV-2 replication complex. Viruses. 2021; 13(9): 1798. https://doi.org/10.3390/v13091798
- Chepur S.V., Myasnikov V.A., Tyunin M.A., Il’inskiy N.S., Nikishin A.S., Isaeva A.A., et al. A model of a novel coronavirus infection in golden Syrian hamsters: major pathological changes. Biomeditsina. 2021; 17(3): 90–4. https://doi.org/10/33647/2074-5982-17-3-90-94 (in Russian)
- Chepur S.V., Tyunin M.A., Myasnikov V.A., Alekseeva I.I., Vladimirova O.O., Il’inskiy N.S., et al. Organ and tissue damage related to SARS-CoV-2: the biological model for experimental (preclinical) trials on golden hamsters Mesocricetus auratus. Klinicheskaya i eksperimental’naya morfologiya. 2021; 10(4): 25–34. https://doi.org/10.31088/CEM2021.10.4.25-34 (in Russian)
- Billioux B.J., Smith B., Nath A. Neurological complications of Ebola virus infection. Neurotherapeutics. 2016; 13(3): 461–70. https://doi.org/10.1007/s131311-016-0457-z
- Chepur S.V., Pluzhnikov N.N., Sayganov S.A., Bakulina L.S., Chubar’ O.V., Yudin M.A., et al. The hypothesis of the aperiodic polysaccharides matrix synthesis. Uspekhi sovremennoy biologii. 2019; 139(6): 583–93. https://doi.org/10.1134/S0042132419060012 (in Russian)
- Sinha N., Balayla G. Hydroxychloroquine and COVID-19. Postgrad. Med. J. 2020; 96(1139): 550–5. https://doi.org/10.1136/postgradmedj-2020-137785
Supplementary files
