An electron microscopic study of neocortex of Syrian hamsters (Mesocricetus auratus) infected with SARS-CoV-2 (Coronaviridae: Coronavirinae: Betacoronavirus: Sarbecovirus)

Cover Image

Cite item

Full Text

Abstract

Introduction. Convalescent COVID-19 patients have various signs of central nervous system damage, including those directly associated with SARS-CoV-2. Hence, studies of SARS-COV-2 related morphological changes in neocortex are particularly relevant for understanding the mechanisms of their formation and development of approaches to preclinical evaluation of the effectiveness of antiviral drugs.

The purpose of the research is a longitudinal study of the ultrastructural alterations in Syrian hamsters’ neocortex after experimental SARS-CoV-2 infection.

Materials and methods. Male Syrian hamsters weighing 80–100 g, aged 4 to 6 weeks, were infected with 26 μl SARS-CoV-2 intranasally with 4×104 TCD50/ml of viral particles. The animals were euthanized on days 3, 7 or 28 post-infection, the brain was extracted with the cortex excision. The material analysis was performed using transmission electron microscopy.

Results and discussion. On day 3 post-infection, the number of moderately hyperchromic neurons in neocortex increased, while by the day 7 the number of apoptotic cells significantly increased. Simultaneously, an increased signs of neuronophagy and representation of atypical glia were observed. Increased number of altered oligodendrocytes was observed on day 28 post-infection. Viral invasion was accompanied by changes in neocortical cells since day 3 post-infection, such as transformation of their nucleus, the rough endoplasmic reticulum and the Golgi vesicles as well as microvascular spasm with perivascular edema.

Conclusion. As a result of electron microscopic study, the ultrastructural alterations in neocortex were described in an experimental model of SARS-CoV-2 infection. The findings can be used to identify the mechanisms of infection pathogenesis and to search for the new directions in development of medicines.

About the authors

Natal’ya M. Paramonova

State Research Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation; Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Email: gniiivm_2@mil.ru
ORCID iD: 0000-0001-5451-3555
SPIN-code: 2945-3310

Senior researcher

Russian Federation, 195043, Saint Petersburg; 194223, Saint Petersburg

Sergey V. Chepur

State Research Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation

Email: gniiivm_2@mil.ru
ORCID iD: 0000-0002-7625-2744
SPIN-code: 3828-6730

Dr. Sci. (Med.), Professor, Head of the Institute

Russian Federation, 195043, Saint Petersburg

Mariya О. Pervak

State Research Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation

Email: gniiivm_7@mil.ru
ORCID iD: 0000-0002-1395-823X

Junior researcher

Russian Federation, 195043, Saint Petersburg

Vadim A. Myasnikov

State Research Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation

Email: gniiivm_7@mil.ru
ORCID iD: 0000-0001-7232-4678

Cand. Sci. (Med.), Head of the Scientific-Research Department

Russian Federation, 195043, Saint Petersburg

Mikhail A. Tyunin

State Research Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation

Email: gniiivm_7@mil.ru
ORCID iD: 0000-0002-6974-5583
SPIN-code: 6161-7029

Cand. Sci. (Med.), Vice-head of the Scientific-Research Department

Russian Federation, 195043, Saint Petersburg

Nikita S. Ilinskiy

State Research Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation

Email: nika_il2@mail.ru
ORCID iD: 0000-0001-7406-753X
SPIN-code: 5511-7800

Deputy Head of the Scientific-Research Department

Russian Federation, 195043, Saint Petersburg

Boris A. Kanevskij

State Research Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation

Email: gniiivm_7@mil.ru
ORCID iD: 0000-0002-6255-8232
SPIN-code: 2549-9294

Deputy Head of the Scientific-Research Department

Russian Federation, 195043, Saint Petersburg

Anna V. Smirnova

State Research Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation

Author for correspondence.
Email: janis_1@mail.ru
ORCID iD: 0000-0003-0483-5032
SPIN-code: 4897-0219

Researcher

Russian Federation, 195043, Saint Petersburg

References

  1. Chepur S.V., Pluzhnikov N.N., Chubar’ O.V., Bakulina L.S., Litvinenko I.V., Makarov V.A., et al. Respiratory RNA viruses: how to prepare for meeting with new pandemic strains. Uspekhi sovremennoy biologii. 2020; 140(4): 359–77. https://doi.org/10.31857/S0042132420040043 (in Russian)
  2. Machhi J., Herskovitz J., Senan A.M., Dutta D., Nath B., Oleynikov M.D., et al. The Natural History, Pathobiology, and Clinical Manifestations of SARS-CoV-2 Infections. J. Neuroimmune Pharmacol. 2020; 15(3): 359–86. https://doi.org/10.1007/s11481-020-09944-5
  3. Kharchenko E.P. The coronavirus SARS-CoV-2: the characteristics of structural proteins, contagiousness, and possible immune collisions. Epidemiologiya i vaktsinoprofilaktika. 2020; 19(2): 13–30. https://doi.org/10.31631/2073-3046-2020-19-2-13-30 (in Russian)
  4. Bruyakin S.D., Makarevich D.A. Structural proteins of the SARS-CoV-2 coronavirus: role, immunogenicity, superantigenic properties and potential use for therapeutic purposes. Vestnik Volgogradskogo gosudarstvennogo meditsinskogo universiteta. 2021; (2): 18–27. https://doi.org/10.19163/1994-9480-2021-2(78)-18-27 (in Russian)
  5. Pashchenkov M.V., Khaitov M.R. Immune response against epidemic coronaviruses. Immunologiya. 2020; 41(1): 5–18. https://doi.org/10.33029/0206-4952-2020-41-1-5-18 (in Russian)
  6. Pan Y., Li X., Yang G., Fan J., Tang Y., Zhao J., et al. Serological immunochromatographic approach in diagnosis with SARS-CoV-2 infected COVID-19 patients. J. Infect. 2020; 81(1): e28–32. https://doi.org/10.1016/j.jinf.2020.03.051
  7. Rodríguez Y., Novelli L., Rojas M., De Santis M., Acosta-Ampudia Y., Monsalve DM., et al. Autoinflammatory and autoimmune conditions at the crossroad of COVID-19. J. Autoimmun. 2020; 114: 102506. https://doi.org/10.1016/j.jaut.2020.102506
  8. Nalbandian A., Sehgal K., Gupta A., Madhavan M.V., McGroder C., Stevens J.S., et al. (2021). Post-acute COVID-19 syndrome. Nat. Med. 2021; 27(4): 601–15. https://doi.org/10.1038/s41591-021-01283-z
  9. Mao L., Jin H., Wang M., Hu Y., Chen S., He Q., et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020; 77(6): 683–690. https://doi.org/10.1001/jamaneurol.2020.1127
  10. Pinna P., Grewal P., Hall J.P., Tavarez T., Dafer R.M., Garg R., et al. Neurological manifestations and COVID-19: Experiences from a tertiary care center at the Frontline. Journal of the neurological sciences. J. Neurol. Sci. 2020; 415: 116969. https://doi.org/10.1016/j.jns.2020.116969
  11. Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z., et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395(10229): 1054–62. https://doi.org/10.1016/S0140-6736(20)30566-3
  12. Xiao A.T., Gao C., Zhang S. Profile of specific antibodies to SARS-CoV-2: The first report. J. Infect. 2020; 81(1): 147–78. https://doi.org/10.1016/j.jinf.2020.03.012
  13. Logunov D.Y., Dolzhikova I.V., Shcheblyakov D.V., Tukhvatulin A.I., Zubkova O.V., Dzharullaeva A.S., et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 2021; 397(10275): 671–81. https://doi.org/10.1016/S0140-6736(21)00234-8
  14. Jones I., Roy P. Sputnik V COVID-19 vaccine candidate appears safe and effective. Lancet. 2021; 397(10275): 642–3. https://doi.org/10.1016/S0140-6736(21)00191-4
  15. Dassarma B., Tripathy S., Matsabisa M. Emergence of ancient convalescent plasma (CP) therapy: to manage COVID-19 pandemic. Transfus. Clin. Biol. 2021; 28(1): 123–127. https://doi.org/10.1016/j.tracli.2020.11.004
  16. Chakraborty C., Sharma A.R., Sharma G., Bhattacharya M., Lee S.S. SARS-CoV-2 causing pneumonia-associated respiratory disorder (COVID-19): diagnostic and proposed therapeutic options. Eur. Rev. Med. Pharmacol. Sci. 2020; 24(7): 4016–26. https://doi.org/10.26355/eurrev_202004_20871
  17. Wu X., Yu K., Wang Y., Xu W., Ma H., Hou Y., et al. Efficacy and safety of Triazavirin therapy for coronavirus disease 2019: a pilot randomized controlled trial. Engineering (Beijing). 2020; 6(10): 1185–91. https://doi.org/10.1016/j.eng.2020.08.011
  18. Chan J.F.W., Zhang A.J., Yuan S., Poon V.K.M., Chan C.C.S., Lee A.C.Y., et al. Simulation of the clinical and pathological manifestations of coronavirus disease 2019 (COVID-19) in a golden Syrian hamster model: implications for disease pathogenesis and transmissibility. Clin. Infect. Dis. 2020; 71(9): 2428–46. https://doi.org/10.1093/cid/ciaa325
  19. TaŞtan C., Yurtsever B., Sir KarakuŞ G., Dİlek KanÇaĞi D., Demİr S., Abanuz S., et al. SARS-CoV-2 isolation and propagation from Turkish COVID-19 patients. Turk. J. Biol. 2020; 44(3): 192–202. https://doi.org/10.3906/biy-2004-113
  20. Yao P., Zhang Y., Sun Y., Gu Y., Xu F., Su B., et al. Isolation and growth characteristics of SARS-CoV-2 in vero cell. Virol. Sin. 2020; 35(3): 348–50. https://doi.org/10.1007/s12250-020-00241-2
  21. Reed L.J., Muench H. A simple method of estimating fifty percent endpoints. Am. J. Hygiene. 1938; 27: 493–7. https://doi.org/10.1093/oxfordjournals.aje.a118408
  22. Makarenko I.E., Avdeeva O.I., Vanatiev G.V., Rybakova A.V., Khod’ko S.V., Makarova M.N., et al. Possible ways of administration and standard drugs in laboratory animals. Mezhdunarodnyy vestnik veterinarii. 2013; (3): 72–84. (in Russian)
  23. Gayer G., ed. Ultrahistochemie. Stuttgart-New York: Fischer Verlag; 1973. (in German)
  24. Saraste J., Prydz K. Assembly and cellular exit of coronaviruses: hijacking an unconventional secretory pathway from the pre-Golgi intermediate compartment via the golgi ribbon to the extracellular space. Cells. 2021; 10(3): 503. https://doi.org/10.3390/cells10030503
  25. Hackstadt T., Chiramel A.I., Hoyt F.H., Williamson B.N., Dooley C.A., Beare P.A., et al. Disruption of the Golgi apparatus and contribution of the endoplasmic reticulum to the SARS-CoV-2 replication complex. Viruses. 2021; 13(9): 1798. https://doi.org/10.3390/v13091798
  26. Chepur S.V., Myasnikov V.A., Tyunin M.A., Il’inskiy N.S., Nikishin A.S., Isaeva A.A., et al. A model of a novel coronavirus infection in golden Syrian hamsters: major pathological changes. Biomeditsina. 2021; 17(3): 90–4. https://doi.org/10/33647/2074-5982-17-3-90-94 (in Russian)
  27. Chepur S.V., Tyunin M.A., Myasnikov V.A., Alekseeva I.I., Vladimirova O.O., Il’inskiy N.S., et al. Organ and tissue damage related to SARS-CoV-2: the biological model for experimental (preclinical) trials on golden hamsters Mesocricetus auratus. Klinicheskaya i eksperimental’naya morfologiya. 2021; 10(4): 25–34. https://doi.org/10.31088/CEM2021.10.4.25-34 (in Russian)
  28. Billioux B.J., Smith B., Nath A. Neurological complications of Ebola virus infection. Neurotherapeutics. 2016; 13(3): 461–70. https://doi.org/10.1007/s131311-016-0457-z
  29. Chepur S.V., Pluzhnikov N.N., Sayganov S.A., Bakulina L.S., Chubar’ O.V., Yudin M.A., et al. The hypothesis of the aperiodic polysaccharides matrix synthesis. Uspekhi sovremennoy biologii. 2019; 139(6): 583–93. https://doi.org/10.1134/S0042132419060012 (in Russian)
  30. Sinha N., Balayla G. Hydroxychloroquine and COVID-19. Postgrad. Med. J. 2020; 96(1139): 550–5. https://doi.org/10.1136/postgradmedj-2020-137785

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Changes in neocortical cells of Syrian hamsters after SARS-CoV-2 infection at a dose of 4×104 TCID50/ml (26 µl/individual, intranasally): a – moderately hyperchromic neuron with a deformed nucleus contour, a large nucleolus and accumulation of RNA-positive material in the cytoplasm; b – apoptosis of a neuron at the stage of nuclear fragmentation, on the insert – a large accumulation of viruses; c – in the terminal sections of unevenly dilated tubules of the ER there are viral particles; d – A fragment of a dendrite with an MBT containing virions. Electronograms. Magnifications: a – 16,500x; b – 6000x; insert – 17,000x; c, d – 60,000x.

Download (601KB)
3. Fig. 2. Viral factory variants in the Syrian hamsters neocortex after SARS-CoV-2 infection with 4×104 TCID50/ml (26 µl/individual, intranasally): a – viral factories formed by the Golgi complex in neurons; b – in neuronal dendrites factory formed by the Golgi complex and the endoplasmic reticulum structures on the day 3 post-infection; in ependymocytes (c) and endothelium of pial blood vessels (d) viral processing mainly involves the endoplasmic reticulum structures. Electronograms. Magnifications: a – 43,000; b – 26,500; c – 60,000; d – 26,500.

Download (542KB)
4. Fig. 3. Damage to oligodendrocytes and myelin apparatus in the Syrian hamsters neocortex on the day 7 post-infection with SARS-CoV-2 in 4×104 TCID50/ml dosage (26 µl/individual, intranasally): a – Wallerian degeneration manifestations with dark neurite degeneration; b – oligodendrocyte apoptosis at the stage of DNA fragmentation; c – desorganisation of myelin in the zone of interception of Ranvier; d – stratification of the lamellae of the myelin sheath. Electronograms. Magnifications: a – 43,000; b – 11,500; c – 16,500; d – 26,500.

Download (688KB)
5. Fig. 4. Structural changes in the blood-brain barrier in the neocortex of Syrian hamsters after infection with SARS-CoV-2 4×104 TCID50/ml (26 µl/individual intranasally): a – spasmodic capillary with edematous perivascular space (PVPR); b – direct contact (arrows) of a neuron (N) filled with erythrocyte (ER) microvessel; c – dormant reserve capillary, the lumen (PRC) of which is blocked by the endotheliocyte nucleus (NEC); d – viral bodies penetrate into the neuron (N), overcoming the basement membrane (BM) of the vessel. Electronograms. Magnifications: a – 6000; b – 4200; c – 11,500; d – 60,000.

Download (623KB)

Copyright (c) 2022 Paramonova N.M., Chepur S.V., Pervak M.О., Myasnikov V.A., Tyunin M.A., Ilinskiy N.S., Kanevskij B.A., Smirnova A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».