Expression of integrins β1, α4 and cell adhesion molecule ICAM-1 in the presence of sodium deoxyribonucleate with ferrum complex (DNA-Na-Fe) by MT-4 cells transformed by human T-lymphotropic virus type 1 (Retroviridae: Orthoretrovirinae: Deltaretrovirus: Human T-lymphotropic virus type 1)

Cover Page

Cite item

Full Text

Abstract

Introduction. The important role of integrins (IG) in the initiation and development of cancer processes makes these structures convenient targets for the development of immunomodulatory therapeutic drugs that have an effect directly on these molecules. Among the latter, IG β1, α4 and cell adhesion receptor ICAM-1 (intercellular adhesion molecule 1) are of particular interest. Immunomodulators are capable of changing the IG activity through non-specific mechanisms, which, however, in some cases can cause a decrease in the protective functions of the immune system and health deterioration.

The aim of the study was to determine the effect on the levels of cellular expression and the nature of IG metabolism of the drug sodium deoxyribonucleate with ferrum complex, DNA-Na-Fe, which is having been used in the Russian Federation as an immunomodulatory agent, but whose action has not been studied in details so far.

Material and methods. We used 2 variants of the neoplastic CD4+ T-lymphocyte cell line transformed with human T-lymphotropic virus type 1 (HTLV-1) of the Retroviridae family, MT-4 (MT-4/1 and MT-4/2). The indicated variants were characterized by different levels of expression of the protein activation markers CD28 and CD38. After cell culture in the presence of 500 μg/ml DNA-Na-Fe, the expression levels of IG β1 (CD29), α4 (CD49d), and ICAM-1 (CD54) were studied by flow cytometry.

Results. The cells of the both lines contained many membrane proteins CD29+ (90.4% ± 4.5) and CD54+ (97.9% ± 1.4), while small percentage of cells contained protein CD49d+ (1.9% ± 1.0). No changes in the expression of the studied proteins were observed in the presence of the drug.

Discussion. The levels of IG β1, α4 and ICAM-1 expression may serve as one of the phenotypic characteristics of MT-4 cells. The obtained data are of great importance because the peculiarities of CD4+ T-lymphocytes transformation and their metabolism during HTLV-1 infection have not been sufficiently studied so far.

Conclusion. The results of this work may be helpful in determining the pathogenesis of HTLV-1-induced diseases, some types of malignancies, and in searching for new specific pharmacological agents, including molecularly targeted ones. The results of the study will help to expand the existing knowledge on the markers of MT-4 cell line.

About the authors

L. B. Kalnina

D.I. Ivanovsky Institute of Virology FSBI «National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya» of the Ministry of Health of Russia

ORCID iD: 0000-0002-2702-8578

123098, Moscow

Russian Federation

L. M. Selimova

D.I. Ivanovsky Institute of Virology FSBI «National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya» of the Ministry of Health of Russia

Author for correspondence.
Email: lselim@mail.ru
ORCID iD: 0000-0003-3709-770X

Lyudmila M. Selimova, D.Sci. (Biol.), Leading Researcher of the Laboratory of Antiviral and Disinfection Agents

123098, Moscow

Russian Federation

E. N. Kaplina

CJSC PC «Technomedservice»

ORCID iD: 0000-0001-8540-5856

105318, Moscow

Russian Federation

D. N. Nosik

D.I. Ivanovsky Institute of Virology FSBI «National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya» of the Ministry of Health of Russia

ORCID iD: 0000-0001-5757-5671

123098, Moscow

Russian Federation

References

  1. Barczyk M., Carracedo S., Gullberg D. Integrins. Cell Tissue Res. 2010; 339(1): 269–80. https://doi.org/10.1007/s00441-009-0834-6
  2. Rehman A., Costin N.A. Integrins and cell metabolism: an intimate relationship impacting cancer. Int. J. Mol. Sci. 2017; 18(1): 189. https://doi.org/10.3390/ijms18010189
  3. Desgrosellier J.S., Cheresh D.A. Integrins in cancer: biological implication and therapeutic opportunities. Nat. Rev. Cancer. 2010; 10(1): 9–22. https://doi.org/10.1038/nrc2748
  4. Cooper J., Filippo G., Giancotti F.G. Integrin signaling in cancer: mechanotransduction, stemness, epithelial plasticity, and therapeutic resistance. Cancer Cell. 2019; 35(3): 347–67. https://doi. org/10.1016/j.ccell.2019.01.007
  5. Mitroulis I., Alexaki V.A., Kourtzelis I., Ziogas A., Hajishengallis G., Chavakis T. Leukocyte integrins: role in leukocyte recruitment and as therapeutic targets in inflammatory disease. Pharmacol. Ther. 2015; 147: 123–35. https://doi.org/10.1016/j.pharmthera.2014.11.008
  6. Беседнова Н.Н., Макаренкова И.Д., Федянина Л.Н., Авдеева Ж.И., Крыжановский С.П., Кузнецова Т.А., и др. Дезоксирибонуклеиновая кислота про- и эукариот в профилактике и терапии инфекционных болезней. Антибиотики и химиотерапия. 2018; 63(5-6): 52–67.
  7. Носик Д.Н., Носик Н.Н., Каплина Э.Н., Калнина Л.Б., Киселёва И.А., Кондрашина Н.Г., и др. Активность препарата «Ферровир» в отношении РНК- и ДНК-содержащих вирусов. Вопросы вирусологии. 2002; 47(3): 21–3.
  8. Селимова Л.М., Калнина Л.Б., Каплина Э.Н., Носик Д.Н. Влияние ферровира на экспрессию поверхностных маркёров активации клетками неопластической линии МТ-4. Клиническая лабораторная диагностика. 2017; 62(6): 355–9. https://doi. org/10.18821/0869-2084-2017-62-6-355-359
  9. Manns A., Hisada M., La Grenada L. Human T-lymphotropic virus type 1 infection. Lancet. 1999; 353(9168): 1951–8. https://doi. org/10.1016/s0140-6736(98)09460-4
  10. Nakamura T., Satoh K., Nakamura H., Fukushima N., Nishiura Y., Furuya T., et al. Role of integrin signaling activation on the development of human T cell leukemia virus-1 (HTLV-1)-associated myelopathy/ tropical spastic paraparesis: its relationship to HTLV-1-infected CD4(+) T cell transmigrating activity into the tissues. AIDS Res. Hum. Retroviruses. 2018; 34(4): 331–6. https://doi.org/10.1089/aid.2017.0261
  11. Glaría E., Valledor A.F. Roles of CD38 in the immune response to infection. Cells. 2020; 9(1): 228. https://doi.org/10.3390/cells9010228 12. Riley J.L., June C.H. The CD28 family: a T-cell rheostat for therapeutic control of T-cell activation. Blood. 2005; 105(1): 13–21. https://doi.org/10.1182/blood-2004-04-1596
  12. Janahú L.T.A., Da Costa C.A., Vallinoto A.C.R., Santana B.B., Ribeiro-Lima J., Santos-Oliveira J.R., et al. CD49d is upregulated in circulating T lymphocytes from HTLV-1-infected patients. Neuroimmunomodulation. 2020; 27(2): 113–22. https://doi. org/10.1159/000507086
  13. Tanaka Y., Fukudome K., Hayashi M., Takagi S., Yoshie O. Induction of ICAM-1 and LFA-3 by Tax1 of human T-cell leukemia virus type 1 and mechanism of down-regulation of ICAM-1 or LFA-1 in adult-T-cell-leukemia cell lines. Int. J. Cancer. 1995; 60(4): 554– 61. https://doi.org/10.1002/ijc.2910600421

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Kalnina L.B., Selimova L.M., Kaplina E.N., Nosik D.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).