Alternative approaches to the diagnosis of African swine fever in the Russian Federation in 2017–2021

Cover Page

Cite item

Full Text

Abstract

Introduction. Prevention and control of African swine fever (ASF) transmission on the territory of the Russian Federation requires monitoring based on testing of samples from pigs and wild boars. Specific anti-ASFV antibodies are rarely detected in samples during routine serological diagnostics. Although, ASF isolates with weakened virulence were confirmed in Russia and neighboring countries.

The aim of this work was to determine the possibility of using alternative samples for ASF diagnosis and evaluate the effectiveness of the diagnostic methods used on the territory of Russia.

Materials and methods. Biological materials obtained from experimentally infected animals and samples collected in the “field” conditions were used in this study.

Results. Complex testing (RT-PCR and ELISA) is a more effective approach to diagnose chronic and asymptomatic forms of ASF compared to the separate use of these techniques. The possibility and efficiency of using alternative samples in diagnostics are demonstrated. It was confirmed that IPT method overcomes ELISA by high diagnostic sensitivity and detection of antibodies on earlier stages in extended range of samples. Anti-ASFV antibodies were detected in domestic and wild pigs in five regions of Russia. Samples from infected pigs that are negative in RT-PCR can be positive for anti-ASFV antibodies. The detection of antibodies in samples from shot wild boars (negative or uncertain in RT-PCR test) suggests the existence of animals surviving ASF infection.

Conclusion. The data obtained suggest a revision of the ASF surveillance strategy, by introducing complex diagnostic methods aimed at detection of both the virus genome and anti-ASFV antibodies simultaneously.

About the authors

Andrey R. Shotin

FGBI “Federal Centre for Animal Health”

Author for correspondence.
Email: shotin@arriah.ru
ORCID iD: 0000-0001-9884-1841

Junior Researcher, FGBI “Federal Centre for Animal Health”

Russian Federation, 600901, Vladimir, Yuryevets microdistrict

Ali Mazloum

FGBI “Federal Centre for Animal Health”

Email: shotin@arriah.ru
ORCID iD: 0000-0002-5982-8393
Russian Federation, 600901, Vladimir, Yuryevets microdistrict

Alexey S. Igolkin

FGBI “Federal Centre for Animal Health”

Email: shotin@arriah.ru
ORCID iD: 0000-0002-5438-8026
Russian Federation, 600901, Vladimir, Yuryevets microdistrict

Ivan V. Shevchenko

FGBI “Federal Centre for Animal Health”

Email: shotin@arriah.ru
ORCID iD: 0000-0001-6482-7814
Russian Federation, 600901, Vladimir, Yuryevets microdistrict

Alexandra A. Elsukova

FGBI “Federal Centre for Animal Health”

Email: shotin@arriah.ru
ORCID iD: 0000-0003-4524-4941
Russian Federation, 600901, Vladimir, Yuryevets microdistrict

Elena V. Aronova

FGBI “Federal Centre for Animal Health”

Email: shotin@arriah.ru
ORCID iD: 0000-0002-2072-6701
Russian Federation, 600901, Vladimir, Yuryevets microdistrict

Natalia N. Vlasova

FGBI “Federal Centre for Animal Health”

Email: shotin@arriah.ru
ORCID iD: 0000-0001-8707-7710
Russian Federation, 600901, Vladimir, Yuryevets microdistrict

References

  1. Gruzdev K.N., Igolkin A.S., Rakhmanov A.M., Shevtsov A.A. African swine fever in Russia: spread, clinical and anatomical manifestations. Veterinariya segodnya. 2014; (4): 10–24. (in Russian)
  2. Beltran-Alcrudo D., Arias M., Gallardo C., Kramer S., Penrith M.L. FAO Animal Production and Health Manual No. 19. African swine fever: Detection and diagnosis. Rome; 2017.
  3. Rodionova O.M., Babakov V.A., Kolodub G.V. About the legal nature of compensation for animal slaughter in the epizootic center. Vestnik Tomskogo gosudarstvennogo universiteta. Pravo. 2020; (35): 196–215. https://doi.org/10.17223/22253513/35/17 (in Russian)
  4. Penrith M.L., Guberti V., Depner K., Lubroth J. Preparation of African swine fever contingency plans. FAO Animal Production and Health Manual No. 8. Rome; 2009.
  5. Alonso C., Borca M., Dixon L., Revilla Y., Rodriguez F., Escribano J.M. ICTV Report Consortium. ICTV Virus Taxonomy Profile: Asfarviridae. J. Gen. Virol. 2018; 99(5): 613–4. https://doi.org/10.1099/jgv.0.001049
  6. Pérez J., Fernández A.I., Sierra M.A., Herráez P., Fernández A., Martín de las Mulas J. Serological and immunohistochemical study of African swine fever in wild boar in Spain. Vet. Rec. 1998; 143(5): 136–9. https://doi.org/10.1136/vr.143.5.136.
  7. Remyga S.G., Pershin A.S., Shevchenko I.V., Igolkin A.S., Shevtsov A.A. Clinical and post-mortem signs in European wild boars and domestic pigs infected with African swine fever virus. Veterinariya segodnya. 2016; (3): 46–51. (in Russian)
  8. Makarov V.V., Sukharev O.I., Tsvetnova I.V. Epizootological characteristics of African swine fever virus. Veterinarnaya praktika. 2013; (1): 6–16. (in Russian)
  9. Gallardo M.C., Reoyo A.T., Fernández-Pinero J., Iglesias I., Muñoz M.J., Arias M.L. African swine fever: a global view of the current challenge. Porcine Health Manag. 2015; 1: 21. https://doi.org/10.1186/s40813-015-0013-y
  10. Gallardo C., Soler A., Nieto R., Sánchez M.A., Martins C., Pelayo V., et al. Experimental transmission of African swine fever (ASF) low virulent isolate NH/P68 by surviving pigs. Transbound. Emerg. Dis. 2015; 62(6): 612–22. https://doi.org/10.1111/tbed.12431
  11. Gogin A., Gerasimov V., Malogolovkin A., Kolbasov D. African swine fever in the North Caucasus region and the Russian Federation in years 2007-2012. Virus Res. 2013; 173(1): 198–203. https://doi.org/10.1016/j.virusres.2012.12.007
  12. Sereda A.D., Dubrovskaya O.A., Imatdinov A.R., Strizhakova O.M., Vasil’ev A.P., Sindryakova I.P., et al. Laboratory diagnostics of chronic and asymptomatic forms of african swine fever. Sel’skokhozyaystvennaya biologiya. 2016; 51(4): 459–66. https://doi.org/10.15389/agrobiology.2016.4.459rus (in Russian)
  13. Eblé P.L., Hagenaars T.J., Weesendorp E., Quak S., Moonen-Leusen H.W., Loeffen W. Transmission of African Swine Fever Virus via carrier (survivor) pigs does occur. Vet. Microbiol. 2019; 237: 108345. https://doi.org/10.1016/j.vetmic.2019.06.018
  14. Nurmoja I., Petrov A., Breidenstein C., Zani L., Forth J.H., Beer M., et al. Biological characterization of African swine fever virus genotype II strains from north-eastern Estonia in European wild boar. Transbound. Emerg. Dis. 2017; 64(6): 2034–41. https://doi.org/10.1111/tbed.12614
  15. Gallardo C., Nurmoja I., Soler A., Delicado V., Simón A., Martin E., et al. Evolution in Europe of African swine fever genotype II viruses from highly to moderately virulent. Vet. Microbiol. 2018; 219: 70–9. https://doi.org/10.1016/j.vetmic.2018.04.001
  16. Gruzdev K.N., Karaulov A.K., Igolkin A.S. Experience in African swine fever control in the Russian Federation and its value for the other countries. Veterinariya segodnya. 2020; (1): 38–43. https://doi.org/10.29326/2304-196X-2020-1-32-38-43 (in Russian)
  17. Petrova O.N., Korennoy F.I., Karaulov A.K., Shevtsov A.A., Gulenkin V.M. Forecast for African swine fever in the Russian Federation for 2020. Available at: https://fsvps.gov.ru/fsvps-docs/ru/iac/asf/publications/asf_prognoz2020.pdf (in Russian)
  18. Rosselkhoznadzor. ASF epizootic situation in the Russian Federation in 2021. Available at: https://fsvps.gov.ru/fsvps-docs/ru/iac/asf/2021/12-13/01.pdf (in Russian)
  19. Gervasi V., Marcon A., Bellini S., Guberti V. Evaluation of the efficiency of active and passive surveillance in the detection of African Swine Fever in wild boar. Vet. Sci. 2019; 7(1): 5. https://doi.org/10.3390/vetsci7010005
  20. Gallardo C., Nieto R., Soler A., Pelayo V., Fernández-Pinero J., Markowska-Daniel I., et al. Assessment of African swine fever diagnostic techniques as a response to the epidemic outbreaks in eastern European union countries: how to improve surveillance and control programs. J. Clin. Microbiol. 2015; 53(8): 2555–65. https://doi.org/10.1128/JCM.00857-15
  21. OIE Terrestrial Manual 2019. Chapter 3.8.1. African swine fever (infection with African swine fever virus). Available at: https://www.oie.int/fileadmin/Home/fr/Health_standards/tahm/3.08.01_ASF.pdf
  22. Global African Swine Fever Research Alliance (GARA) Gap Analysis Report; 2018. Availanle at: https://go.usa.gov/xPfWr
  23. Gallardo C., Fernández-Pinero J., Arias M. African swine fever (ASF) diagnosis, an essential tool in the epidemiological investigation. Virus Res. 2019; 271: 197676. https://doi.org/10.1016/j.virusres.2019.197676
  24. Mur L., Igolkin A., Varentsova A., Pershin A., Remyga S., Shevchenko I., et al. Detection of African swine fever antibodies in experimental and field samples from the Russian Federation: implications for control. Transbound. Emerg. Dis. 2016; 63(5): e436–40. https://doi.org/10.1111/tbed.12304
  25. Sánchez-Vizcaíno J.M., Mur L., Gomez-Villamandos J.C., Carrasco L. An update on the epidemiology and pathology of African swine fever. J. Comp. Pathol. 2015; 152(1): 9–21. https://doi.org/10.1016/j.jcpa.2014.09.003
  26. Mima K.A., Burmakina G.S., Vasil'ev A.P., Kazakova A.S., Dubrovskaya O.A., Malogolovkin A.S., et al. Comparison methods of serological diagnostic African swine fever. Veterinariya. 2016; (9): 49–54. (in Russian).
  27. Strizhakova O.M., Lyska V.M., Malogolovkin A.S., Novikova M.B., Sidlik M.V., Nogina I.V., et al. Validation of an ELISA kit for detection of antibodies against ASF virus in blood or spleen of domestic pigs and wild boars. Sel’skokhozyaystvennaya biologiya. 2016; 51(6): 845–52. https://doi.org/10.15389/agrobiology.2016.6.845rus (in Russian)
  28. Pershin A., Shevchenko I., Igolkin A., Zhukov I., Mazloum A., Aronova E., et al. A long-term study of the biological properties of ASF virus isolates originating from various regions of the Russian Federation in 2013–2018. Vet. Sci. 2019; 6(4): 99. https://doi.org/10.3390/vetsci6040099
  29. Gallardo C., Soler A., Rodze I., Nieto R., Cano-Gómez C., Fernandez-Pinero J., et al. Attenuated and non-haemadsorbing (non-HAD) genotype II African swine fever virus (ASFV) isolated in Europe, Latvia 2017. Transbound. Emerg. Dis. 2019; 66(3): 1399–404. https://doi.org/10.1111/tbed.13132
  30. Sun E., Zhang Z., Wang Z., He X., Zhang X., Wang L., et al. Emergence and prevalence of naturally occurring lower virulent African swine fever viruses in domestic pigs in China in 2020. Sci. China Life Sci. 2021; 64(5): 752–65. https://doi.org/10.1007/s11427-021-1904-4
  31. Rosselkhoznadzor. ASF epizootic situation in the Russian Federation, 2007-2021. Available at: https://fsvps.gov.ru/fsvps-docs/ru/iac/asf/2021/12-27/03.pdf (in Russian)
  32. Shevtsov A.A., Petrova O.N., Remyga S.G., Pershin A.S., Gruzdev K.N., Igolkin A.S. Analysis of laboratory tests for several viral swine diseases in Russia in 2011-2017 foot-and-mouth disease. Veterinariya segodnya. 2018; (1): 42–8. https://doi.org/10.29326/2304-196X-2018-1-24-42-48 (in Russian)
  33. European Food Safety Authority. Epidemiological analyses of African swine fever in the European Union (November 2018 to October 2019). EFSA J. 2020; 18(1): e05996. https://doi.org/10.2903/j.efsa.2020.5996
  34. Zani L., Forth J.H., Forth L., Nurmoja I., Leidenberger S., Henke J., et al. Deletion at the 5’-end of Estonian ASFV strains associated with an attenuated phenotype. Sci. Rep. 2018; 8(1): 6510. https://doi.org/10.1038/s41598-018-24740-1
  35. Terrestrial Animal Health Code; 2019. Available at: https://www.oie.int/en/standard-setting/terrestrial-code/access-online/
  36. Zhuravleva V.A., Sidlik M.V., Lyska V.M., Vlasov M.E., Balyshev V.M. The role of wild boars in the spread of ASF in the Vladimir region. Veterinariya. 2019; (5): 3–8. https://doi.org/10.30896/0042-4846.2019.22.5.03-08 (in Russian)
  37. Schulz K., Staubach C., Blome S., Viltrop A., Nurmoja I., Conraths F.J., et al. Analysis of Estonian surveillance in wild boar suggests a decline in the incidence of African swine fever. Sci. Rep. 2019; 9(1): 8490. https://doi.org/10.1038/s41598-019-44890-0
  38. Schulz K., Staubach C., Blome S., Nurmoja I., Viltrop A., Conraths F.J., et al. How to demonstrate freedom from African swine fever in wild boar – Estonia as an example. Vaccines (Basel). 2020; 8(2): 336. https://doi.org/10.3390/vaccines8020336

Copyright (c) 2022 Shotin A.R., Mazloum A., Igolkin A.S., Shevchenko I.V., Elsukova A.A., Aronova E.V., Vlasova N.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies