Problems of specific prevention of African swine fever

封面

如何引用文章

详细

This review presents the current state of the problem of development and application of the specific prevention of African swine fever (ASF) with a brief description of its etiology and pathogenesis. The unique nature of the ASF virus (ASFV) determines some limitations and the complexity of solving the problem of vaccine development. Such situation stimulated the development of highly specific diagnostic methods for rapid and accurate detection of the ASFV. In this regard, results of studies, including our own, concerning the comparative analysis of the genome of vaccine and virulent strains of the ASFV, as well as immunodiagnostic approaches to determine causes of high virulence and low protective activity of the ASFV, are briefly presented. Special attention is given to the issue related to the development of safe and effective vaccines against ASF. In this context disadvantages and possible advantages of live attenuated (LAV) and recombinant (RV) vaccines are considered in details. Results of recent studies on the assessment of the immunogenicity of genetically modified vaccines (GMV) which developed in various laboratories around the world are presented. The obtained data indicate that ASF vaccination is currently the most promising measure to stop the spread of this disease in our country and in the world, however, previous experience with ASF vaccination has revealed some problems in its development and application. The significant contribution of foreign researchers to the study of the basics of virulence of this pathogen and the study of its genes functions are noted. The possible further expansion of ASF in Europe and Asia in bordering Russia territories, as well as the established fact of the persistence of ASFV in wild boar population indicate a constant threat of its re-introduction into our country. In conclusion, the importance of developing a safe effective vaccine against ASF and the assessing of the possible risks of creating the artificial sources of the infection in nature as a result of its use is emphasized.

作者简介

Natalia Vlasova

Federal Scientific Center All-Russian Research Institute of Experimental Veterinary named after the honorary K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences

Email: vlanany@yandex.ru
ORCID iD: 0000-0001-8707-7710

Doctor of Biological Sciences, Principal Research Scientist of the Laboratory of Biochemistry and Molecular Biology

俄罗斯联邦, 109428, Moscow, Ryazansky prospect, 24, building 1

Oleg Verkhovsky

Diagnostic and Prevention Research Institute for Human and Animal Diseases

Email: nfo@dpri.ru
ORCID iD: 0000-0003-0784-9341

Doctor of Biological Sciences, Professor, President 

俄罗斯联邦, 123098, Moscow, Gamaleya str., 16, bld.2, 3

Taras Aliper

Federal Scientific Center All-Russian Research Institute of Experimental Veterinary named after the honorary K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences

Email: info@dpri.ru
ORCID iD: 0000-0003-2696-1363

Doctor of Veterinary Sciences, Head of Swine Disease laboratory

俄罗斯联邦, 109428, Moscow, Ryazansky prospect, 24, building 1

Olga Kapustina

Federal Scientific Center All-Russian Research Institute of Experimental Veterinary named after the honorary K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences

Email: olgakapustina2010@yandex.ru
ORCID iD: 0000-0002-7382-8656

Doctor of Veterinary Sciences, Leading Researcher of the Immunology Laboratory

俄罗斯联邦, 109428, Moscow, Ryazansky prospect, 24, building 1

Konstantin Alekseev

Federal Scientific Center All-Russian Research Institute of Experimental Veterinary named after the honorary K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences

Email: kkendwell@mail.ru
ORCID iD: 0000-0001-9536-3127

PhD, Leading Researcher of the Immunology Laboratory

俄罗斯联邦, 109428, Moscow, Ryazansky prospect, 24, building 1

Anton Yuzhakov

Federal Scientific Center All-Russian Research Institute of Experimental Veterinary named after the honorary K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences

Email: anton_oskol@mail.ru
ORCID iD: 0000-0002-9354-6824

PhD, Head of the Laboratory of Biochemistry and Molecular Biology

俄罗斯联邦, 109428 Moscow, Ryazansky prospect, 24, building 1

Mikhail Gulyukin

Federal Scientific Center All-Russian Research Institute of Experimental Veterinary named after the honorary K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences

Email: gulyukin@viev.ru
ORCID iD: 0000-0002-7489-6175

Doctor of Veterinary Sciences, academic of the Russian Academy of Sciences, head of scientific direction

俄罗斯联邦, 109428, Moscow, Ryazansky prospect, 24, building 1

Aleksey Gulyukin

Federal Scientific Center All-Russian Research Institute of Experimental Veterinary named after the honorary K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: admin@viev.ru
ORCID iD: 0000-0003-2160-4770

Doctor of Veterinary Sciences, Director

俄罗斯联邦, 109428, Moscow, Ryazansky prospect, 24, building 1

参考

  1. Mebus C. African swine fever. Adv. Virus Res. 1988; 35: 251–69.
  2. Dixon L.K., Abrams C.C., Chapman D.G., Zhang F. African swine fever virus. In: Mettenleiter T.C., Sobrino F., eds. Animal Viruses: Molecular Biology. Norfolk: Caister Academic Press; 2008: 457–521.
  3. Sanchez-Vizcaino J.M., Martinez-Lopez B., Martinez-Aviles M., Martins C., Boinas F., Vial L., et al. Scientific review on African swine fever. EFSA Supporting Publications. 2009; 6(8): 5E.
  4. Montgomery R.E. On a form of swine fever occurring in British East Africa (Kenya Colony). J. Comp. Pathol. 1921; 34: 159–91.
  5. Dixon L.K., Costa J.V., Escribano J.M., Rock D.L., Vinuela E., Wilkinson P.J. Family Asfarviridae. In: Van Regenmortel M.H.V., Fauquet C.M., Bishop D.H.L., Carestens E.B., Estes M.K., Lemon S.M., eds. Virus Taxonomy: Seventh Report of the International Committee on Taxonomy of Viruses. San Diego: Summers Academic Press; 2000: 159–65.
  6. Colson P., De Lamballerie X., Yutin N., Asgari S., Bigot Y., Bideshi D.K., et al. “Megavirales”, a proposed new order for eukaryotic nucleocytoplasmic large DNA viruses. Arch. Virol. 2013; 158(12): 2517–21. https://doi.org/10.1007/s00705-013-1768-6
  7. Gulyukin M.I. 120 years of the All-Russian Research Institute of Experimental Veterinary Medicine named after Y.R. Kovalenko. Trudy Vserossiyskogo NII eksperimental’noy veterinarii im. Ya.R. Kovalenko. 2018; 80(1): 12–36. https://doi.org/10.30917/ATT-PRINT-2018-1 (in Russian)
  8. Mitin N.I., Balyshev V.M., Fedorishchev I.V., Shevchenko A.A., Petrov Yu.I. Classification scheme of the ASF virus. В кн.: Materials of the Scientific Conference of the All-Russian Research Institute of Veterinary Virology and Microbiology. Volume 1 [Materialy nauchnoy konferentsii VNIIVViM. Tom 1]. Pokrov; 1986: 69–73. (in Russian)
  9. Vishnyakov I.F., Mitin N.I., Petrov Yu.I., Cheryatnikov L.L., Kiselev A.V., Burlakov V.A., et al. Seroimmunological classification of natural isolates of the African swine fever virus. In: Topical Issues of Veterinary Virology: Materials of the Scientific and Practical Conference «Classical Swine Fever – Urgent Problems of Science and Practice» [Aktual’nye voprosy veterinarnoy virusologii: materialy nauchno-prakticheskoy konferentsii «Klassicheskaya chuma sviney – neotlozhnye problemy nauki i praktiki»]. Pokrov; 1995: 141–3. (in Russian)
  10. Burlakov V.A. Immunological properties of the virus and the problems of developing specific ASF prevention tools: Diss. Pokrov; 1979. (in Russian)
  11. Balyshev V.M., Knize A.V., Tsybanov S.Zh. ASF geography and serotype heterogeneity of the pathogen. In: Materials of the Conference of the Moscow Veterinary Academy [Materialy konferentsii Moskovskoy veterinarnoy akademii]. Moscow; 1999: 92–4. (in Russian)
  12. Manso-Ribeiro J., Nunes-Petisca J.L., Lopez-Frazao F., Sobral M. Vaccination against ASF. Bull. Off. Int. Epizoot. 1963; 60: 921–37.
  13. Boinas F., Hutchings G., Dixon L., Wilkinson P. Characterization of pathogenic and non-pathogenic African swine fever virus isolates from Ornithodoros erraticus inhabiting pig premises in Portugal. J. General. Virol. 2004; 85(Pt. 8): 2177–87. https://doi.org/10.1099/vir.0.80058-0
  14. Morgunov Yu.P., Petrov Yu.I. Study of the immunological properties of ASF type 5 virus: isolation, identification and typing of the reference strain. Problemy biologii produktivnykh zhivotnye. 2010; (4): 104–11. (in Russian)
  15. Balyshev V.M., Lagutkin N.A., Salina M.V., Zubairov M.M., Fedorishchev I.V., Karpov G.M. Express method of obtaining type-specific reference serums in ASF. In: Materials of the International Scientific and Practical Conference «Diagnostics, Prevention and Measures to Combat Especially Dangerous and Exotic Animal Diseases» [Materialy Mezhdunarodnoy nauchno-prakticheskoy konferentsii «Diagnostika, profilaktika i mery bor’by s osobo opasnymi i ekzoticheskimi boleznyami zhivotnykh»]. Pokrov; 1998: 64–5. (in Russian)
  16. Carrascosa J.L., Carazo J.M., Carrascosa A.L., Garcia N., Santisteban A., Vinuela E., et al. General morphology and capsid fine structure of African swine fever virus particles. Virology. 1984; 132(1): 160–72.
  17. Salas M.L., Andrés M.G. African swine fever virus morphogenesis. Virus Res. 2012; 173(1): 29–41. https://doi.org/10.1016/j.virusres.2012.09.016
  18. Dixon L.K., Baylis S.A., Vydelingum S., Twigg S.R., Hammond J.M., Hingamp P.M., et al. African swine fever virus genome content and variability. Arch. Virol. Suppl. 1993; 7: 185–99. https://doi.org/10.1007/978-3-7091-9300-6_15
  19. Dixon L.K., Chapman D.A., Netherton C.L., Upton C. African swine fever virus replication and genomics. Virus Res. 2013; 173: 3–14. https://doi.org/10.1016/j.virusres.2012.10.020
  20. Yáñez R.J., Rodriguez J.M., Nogal M.L., Yuste L., Enriquez C., Rodriguez J.F., et al. Analysis of the complete nucleotide sequence of African swine fever virus. Virology. 1995; 208(1): 249–78. https://doi.org/10.1006/viro.1995.1149
  21. Gonzalez A., Talavera A., Almendral J.M., Viñuela E. Hairpin loop structure of African swine fever virus DNA. Nucleic Acids Res. 1986; 14(17): 6835–44. https://doi.org/10.1093/nar/14.17.6835.
  22. Vlasova N.N., Vlasova A.N. African Swine Fever Virus pathogenesis and vaccine development: challenges and possible approaches. Charter I. In: Fevers: Types, Treatments and Health Risks. New York: Nova Science Publishers, Inc.; 2013: 3–26.
  23. Dixon L.K., Abrams C.C., Bowick G., Goatley L.C., Kay-Jackson P.C., Chapman D., et al. African swine fever virus proteins involved in evading host defence systems. Vet. Immunol. Immunopathol. 2004; 100(3-4): 117–34. https://doi.org/10.1016/j.vetimm.2004.04.002
  24. Dixon L.K., Abrams C.C., Chapman D.G., Zhang F. African swine fever virus. In: Sobrino T.C.M.F., ed. Animal Viruses Molecular Biology. Norwich: Caister Academic Press; 2008: 457–521.
  25. Gomez-Villamandos J.C., Bautista M.J., Carrasco L., Chacon-Manrique de Lara F., Hervas J., Wilkinson P.J., et al. Thrombocytopenia associated with apoptotic megakaryocytes in a viral haemorrhagic syndrome induced by a moderately virulent strain of African swine fever virus. J. Comp. Pathol. 1998; 118(1): 1–13. https://doi.org/10.1016/s0021-9975(98)80023-6
  26. Goatley L.C., Twigg S.R., Miskin J.E., Monaghan P., St-Arnaud R., Smith G.L., et al. The African swine fever virus protein j4R binds to the alpha chain of nascent polypeptide-associated complex. J. Virol. 2002; 76(19): 9991–9. https://doi.org/10.1128/jvi.76.19.9991-9999.2002
  27. Zsak L., Lu Z., Burrage T.G., Neilan J.G., Kutish G.F., Moore D.M., et al. African swine fever virus multigene family 360 and 530 genes are novel macrophage host range determinants. J. Virol. 2001; 75(7): 3066–76. https://doi.org/10.1128/jvi.75.7.3066-3076.2001
  28. Tulman E.R., Rock D.L. Novel virulence and host range genes of African swine fever virus. Curr. Opin. Microbiol. 2001; 4(4): 456–61. https://doi.org/10.1016/s1369-5274(00)00235-6
  29. Rock D.L. Challenges for African swine fever vaccine development – “…perhaps the end of the beginning.” Vet. Microbiol. 2017; 206: 52–8. https://doi.org/10.1016/j.vetmic.2016.10.003
  30. Blome S., Gabriel C., Beer M. Modern adjuvants do not enhance the efficacy of an inactivated African swine fever virus vaccine preparation. Vaccine. 2014; 32(31): 3879–82. https://doi.org/10.1016/j.vaccine.2014.05.051
  31. Alonso C., Galindo I., Cuesta-Geijo M.A., Cabezas M., Hernaez B., Munoz-Moreno R. African swine fever virus-cell interactions: From virus entry to cell survival. Virus Res. 2013; 173(1): 42–57. https://doi.org/10.1016/j.virusres.2012.12.006
  32. Borca M.V., Irusta P., Carrillo C., Afonso C.L., Burrage T., Rock D.L. African swine fever virus structural protein p72 contains a conformational neutralizing epitope. Virology. 1994; 201(2): 413–8. https://doi.org/10.1006/viro.1994.1311
  33. Onisk D., Borca M., Kutish S., Kramer E., Irusta P., Rock D.L. Passively transferred African swine fever virus antibodies protect swine against lethal infection. Virology. 1994; 198(1): 350–4. https://doi.org/10.1006/viro.1994.1040
  34. Escribano J.M., Galindo I., Alonso C. Antibody-mediated neutralization of African swine fever virus: Myths and facts. Virus Res. 2013; 173(1): 101–9. https://doi.org/10.1016/j.virusres.2012.10.012
  35. Ruiz-Gonzalvo F., Carnero M.E., Caballero C., Martínez J. Inhibition of African swine fever infection in the presence of immune sera in vivo and in vitro. Am. J. Vet. Res. 1986; 47(6): 1249–52.
  36. Halstead S.B., Chow J., Marchette N.J. Immunologic enhancement of Dengue virus replication. Nat. New Biol. 1973; 243(122): 24–6.
  37. Tirado S.M., Yoon K.J. Antibody-dependent enhancement of virus infection and disease. Viral Immunol. 2003; 16(1): 69–86. https://doi.org/10.1089/088282403763635465
  38. Pershin A.S., Remyga S.G., Shevchenko I.V., Zhukov I.Yu., Shevtsov A.A., Erofeev S.G. Influence of passive immunization on clinical and pathological features of pigs infection with isolate Martins-Crimea 01/16 ASFV. Veterinariya. 2018; (1): 25–31. https://doi.org/10.30896/0042-4846.2018.21.1.25-31 (in Russian)
  39. Hanada K., Suzuki Y., Gojobori T. A large variation in the rates of synonymous substitution for RNA viruses and its relationship to a diversity of viral infection and transmission modes. Mol. Biol. Evol. 2004; 21(6): 1074–80. https://doi.org/10.1093/molbev/msh109
  40. Gómez-Puertas P., Rodríguez F., Oviedo J.M., Brun A., Alonso C., Escribano J.M. The African swine fever virus proteins p54 and p30 are involved in two distinct steps of virus attachment and both contribute to the antibody-mediated protective immune response. Virology. 1998; 243(2): 461–71. https://doi.org/10.1006/viro.1998.9068
  41. Neilan J.G., Zsak L., Lu Z., Burrage T.G., Kutish G.F., Rock D.L. Neutralizing antibodies to African swine fever virus proteins p30, p54, and p72 are not sufficient for antibody-mediated protection. Virology. 2004; 319(2): 337–42. https://doi.org/10.1016/j.virol.2003.11.011
  42. Ruiz-Gonzalvo F., Rodriguez F., Escribano J. Functional and immunological properties of the baculovirus-expressed hemagglutinin of African swine fever virus. Virology. 1996; 218(1): 285–9. https://doi.org/10.1006/viro.1996.0193
  43. Goatley L.C., Reis A.L., Portugal R., Goldswain H., Shimmon G.L., Hargreaves Z., et al. A pool of eight virally vectored African swine fever antigens protect pigs against fatal disease. Vaccines (Basel). 2020; 8(2): 234. https://doi.org/10.3390/vaccines8020234
  44. Leitão A., Cartaxeiro C., Coelho R., Cruz B., Parkhouse R.M.E., Portugal F.C., et al. The non-haemadsorbing African swine fever virus isolate ASFV/NH/P68 provides a model for defining the protective anti-virus immune response. J. Gen. Virol. 2001; 82(Pt. 3): 513–23. https://doi.org/10.1099/0022-1317-82-3-513
  45. Mulumba-Mfumu L.K., Goatley L.C., Saegerman C., Takamatsu H.H., Dixon L.K. Immunization of African indigenous pigs with attenuated genotype I African swine fever virus OURT88/3 induces protection against challenge with virulent strains of genotype I. Transbound. Emerg. Dis. 2016; 63(5): e323–7. https://doi.org/10.1111/tbed.12303
  46. Takamatsu H.H., Denyer M.S., Lacasta A., Stirling C.M., Argilaguet J.M., Netherton C.L., et al. Cellular immunity in ASFV responses. Virus Res. 2013; 173(1): 110–21. https://doi.org/10.1016/j.virusres.2012.11.009
  47. Oura C.A.L., Denyer M.S., Takamatsu H., Parkhouse R.M.E. In vivo depletion of CD8+ T lymphocytes abrogates protective immunity to African swine fever virus. J. Gen. Virol. 2005; 86(Pt. 9): 2445–50. https://doi.org/10.1099/vir.0.81038-0
  48. Arias M., de la Torre A., Dixon L., Gallardo C., Jori F., Laddomada A., et al. Approaches and perspectives for development of African swine fever virus vaccines. Vaccines (Basel). 2017; 5(4): 35. https://doi.org/10.3390/vaccines5040035
  49. Gallardo C., Soler A., Nieto R., Cano C., Pelayo V., Sánchez M.A., et al. Experimental infection of domestic pigs with African swine fever virus Lithuania 2014 genotype II field isolate. Transbound. Emerg. Dis. 2017; 64(1): 300–4. https://doi.org/10.1111/tbed.12346
  50. Sanford B., Holinka L., O’Donnell V., Krug P., Carlson J., Alfano M., et al. Deletion of the thymidine kinase gene induces complete attenuation of the Georgia isolate of African swine fever virus. Virus Res. 2016; 213: 165–71. https://doi.org/10.1016/j.virusres.2015.12.002
  51. Reis A.L., Abrams C.C., Goatley L.C., Netherton C., Chapman D.G., Sanchez-Cordon P., et al. Deletion of African swine fever virus interferon inhibitors from the genome of a virulent isolate reduces virulence in domestic pigs and induces a protective response. Vaccine. 2016; 34(39): 4698–705. https://doi.org/10.1016/j.vaccine.2016.08.011
  52. Borca M.V., Ramirez-Medina E., Silva E., Vuono E., Rai A., Pruitt S., et al. Development of a highly effective African Swine Fever virus vaccine by deletion of the I177L gene results in sterile immunity against the current epidemic Eurasia strain. J. Virol. 2020; 94(7): e02017-19. https://doi.org/10.1128/JVI.02017-19
  53. O’Donnell V., Holinka L.G., Gladue D.P., Sanford B., Krug P.W., Lu X., et al. African swine fever virus Georgia isolate harboring deletions of MGF360 and MGF505 genes is attenuated in swine and confers protection against challenge with virulent parental virus. J. Virol. 2015; 89(11): 6048–56. https://doi.org/10.1128/JVI.00554-15
  54. Barasona J.A., Gallardo C., Cadenas-Fernández E., Jurado C., Rivera B., Rodríguez-Bertos A., et al. First oral vaccination of Eurasian wild boar against African swine fever virus genotype II. Front. Vet. Sci. 2019; 6: 137. https://doi.org/10.3389/fvets.2019.00137
  55. Monteagudo P.L., Lacasta A., López E., Bosch L., Collado J., Pina-Pedrero S., et al. BA71ΔCD2: a new recombinant live attenuated African swine fever virus with cross-protective capabilities. J. Virol. 2017; 91(21): e01058-17. https://doi.org/10.1128/JVI.01058-17
  56. Argilaguet J.M., Pérez-Martín E., Nofrarías M., Gallardo C., Accensi F., Lacasta A., et al. DNA vaccination partially protects against African swine fever virus lethal challenge in the absence of antibodies. PLoS One. 2012; 7(9): e40942. https://doi.org/10.1371/journal.pone.0040942
  57. Lokhandwala S., Petrovan V., Popescu L., Sangewar N., Elijah C., Stoian A., et al. Adenovirus-vectored African Swine Fever Virus antigen cocktails are immunogenic but not protective against intranasal challenge with Georgia 2007/1 isolate. Vet. Microbiol. 2019; 235: 10–20. https://doi.org/10.1016/j.vetmic.2019.06.006
  58. Lacasta A., Ballester M., Monteagudo P.L., Rodríguez J.M., Salas M.L., Accensi F., et al. Expression library immunization can confer protection against lethal challenge with African swine fever virus. J. Virol. 2014; 88(22): 13322–32. https://doi.org/10.1128/JVI.01893-14.58
  59. Nedosekov V., Martyniuk A., Stepanova T., Yustyniuk V., Gulyukina I., Parshikova A., et al. Chlamydiosis of dogs and cats in modern cities. E3S Web Conf. 2021; 258: 04004. https://doi.org/10.1051/e3sconf/202125804004

补充文件

附件文件
动作
1. JATS XML

版权所有 © Problems of Virology, 2022

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».