Enteroviral (Picornaviridae: Enterovirus) (nonpolio) vaccines
- 作者: Novikov D.V.1, Melentev D.A.1,2
-
隶属关系:
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology
- N.I. Lobachevsky State University of Nizhny Novgorod
- 期: 卷 67, 编号 3 (2022)
- 页面: 185-192
- 栏目: REVIEWS
- URL: https://journals.rcsi.science/0507-4088/article/view/118201
- DOI: https://doi.org/10.36233/0507-4088-111
- ID: 118201
如何引用文章
全文:
详细
Non-polio enteroviruses (NPEVs) are ubiquitous and are one of the main causative agents of viral infections in children. NPEVs most commonly infect newborns and young children, due to their lack of antibodies. In children, clinical manifestations can range from acute febrile illness to severe complications that require hospitalization and lead in some cases to disability or death. NPEV infections can have severe consequences, such as polio-like diseases, serous meningitis, meningoencephalitis, myocarditis, etc. The most promising strategy for preventing such diseases is vaccination. No less than 53 types of NPEVs have been found to circulate in Russia. However, of epidemic importance are the causative agents of exanthemic forms of the disease, aseptic meningitis and myocarditis. At the same time, the frequency of NPEV detection in the constituent entities of the Russian Federation is characterized by uneven distribution and seasonal upsurges. The review discusses the epidemic significance of different types of enteroviruses, including those relevant to the Russian Federation, as well as current technologies used to create enterovirus vaccines for the prevention of serious diseases.
作者简介
Dmitri Novikov
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology
Email: novikov.dv75@mail.ru
ORCID iD: 0000-0001-7049-6935
Ph.D. (Biol.), Associate Professor, Lead Researcher of the Immunochemistry Laboratory
俄罗斯联邦, 603950, Nizhny NovgorodDmitry Melentev
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology; N.I. Lobachevsky State University of Nizhny Novgorod
编辑信件的主要联系方式.
Email: dim-melente@yandex.ru
ORCID iD: 0000-0002-2441-6874
Junior Researcher of the Immunochemistry Laboratory, Postgraduate Student
俄罗斯联邦, 603950, Nizhny Novgorod; 603022, Nizhny Novgorod参考
- International committee on taxonomy of viruses (ICTV). Genus: Enterovirus. Available at: https://talk.ictvonline.org/ictv-reports/ictv_online_report/positive-sense-rna-viruses/w/picornaviridae/681/genus-enterovirus
- Oberste M.S., Maher K., Kilpatrick D.R., Pallansch M.A. Molecular evolution of the human enteroviruses: correlation of serotype with VP1 sequence and application to picornavirus classification. J. Virol. 1999; 73(3): 1941–8. https://doi.org/10.1128/JVI.73.3.1941-1948.1999
- Simmonds P., Gorbalenya A.E., Harvala H., Hovi T., Knowles N.J., Lindberg A.M., et al. Recommendations for the nomenclature of enteroviruses and rhinoviruses. Arch. Virol. 2020; 165(3): 793–7. https://doi.org/10.1007/s00705-019-04520-6
- Brouwer L., Moreni G., Wolthers K.C., Pajkrt D. World-wide prevalence and genotype distribution of enteroviruses. Viruses. 2021; 13(3): 434. https://doi.org/10.3390/v13030434
- Wells A.I., Coyne C.B. Enteroviruses: A gut-wrenching game of entry, detection, and evasion. Viruses. 2019; 11(5): 460. https://doi.org/10.3390/v11050460
- Harvala H., Benschop K.S.M., Berginc N., Midgley S., Wolthers K., Simmonds P., et al. European non-polio enterovirus network: introduction of hospital-based surveillance network to understand the true disease burden of non-polio enterovirus and parechovirus infections in Europe. Microorganisms. 2021; 9(9): 1827. https://doi.org/10.3390/microorganisms9091827
- State report «On the state of sanitary and epidemiological well-being of the population in the Russian Federation in 2019». Moscow; 2020. (in Russian)
- State report «On the state of sanitary and epidemiological well-being of the population in the Russian Federation in 2020». Moscow; 2021. (in Russian)
- Cheng H.Y., Huang Y.C., Yen T.Y., Hsia S.H., Hsieh Y.C., Li C.C., et al. The correlation between the presence of viremia and clinical severity in patients with enterovirus 71 infection: a multi-center cohort study. BMC Infect. Dis. 2014; 14: 417. https://doi.org/10.1186/1471-2334-14-417
- Koh W.M., Badaruddin H., La H., Chen M.I.C., Cook A.R. Severity and burden of hand, foot and mouth disease in Asia: a modeling study. BMJ Glob. Health. 2018; 3(1): e000442. https://doi.org/10.1136/bmjgh-2017-000442
- Aw-Yong K.L., NikNadia N.M.N., Tan C.W., Sam I.C., Chan Y.F. Immune responses against enterovirus A71 infection: Implications for vaccine success. Rev. Med. Virol. 2019; 29(5): e2073. https://doi.org/10.1002/rmv.2073
- Ni H., Yi B., Yin J., He T., Du Y., Wang J., et al. Epidemiological and etiological characteristics of hand, foot and mouth disease in Ningbo, China, 2008-2011. J. Clin. Virol. 2012; 54(4): 342–8. https://doi.org/10.1016/j.jcv.2012.04.021
- Yee P.T.I., Poh L.C. Impact of genetic changes, pathogenicity and antigenicity on Enterovirus-A71 vaccine development. Virology. 2017; 506: 121–9. https://doi.org/10.1016/j.virol.2017.03.017
- Mao Q., Wang Y., Yao X., Bian L., Wu X., Xu M., et al. Coxsackievirus A16: epidemiology, diagnosis, and vaccine. Hum. Vaccin. Immunother. 2014; 10(2): 360–7. https://doi.org/10.4161/hv.27087
- Li J.L., Yuan J., Yang F., Wu Z.Q., Hu Y.F., Xue Y., et al. Epidemic characteristics of hand, foot, and mouth disease in southern China, 2013: coxsackievirus A6 has emerged as the predominant causative agent. J. Infect. 2014; 69(3): 299–303. https://doi.org/10.1016/j.jinf.2014.04.001
- Yang Q., Ding J., Cao J., Huang Q., Hong C., Yang B. Epidemiological and etiological characteristics of hand, foot, and mouth disease in Wuhan, China from 2012 to 2013: outbreaks of coxsackieviruses A10. J. Med. Virol. 2015; 87(6): 954–60. https://doi.org/10.1002/jmv.24151
- Kim H.J., Kang B., Hwang S., Hong J., Kim K., Cheon D.S. Epidemics of viral meningitis caused by echovirus 6 and 30 in Korea in 2008. Virol. J. 2012; 9: 38. https://doi.org/10.1186/1743-422X-9-38
- Chen P., Tao Z., Song Y., Liu G., Wang H., Liu Y., et al. A coxsackievirus B5-associated aseptic meningitis outbreak in Shandong Province, China in 2009. J. Med. Virol. 2013; 85(3): 483–9. https://doi.org/10.1002/jmv.23478
- Kim D.S., Nam J.H. Characterization of attenuated coxsackievirus B3 strains and prospects of their application as live-attenuated vaccines. Expert. Opin. Biol. Ther. 2010; 10(2): 179–90. https://doi.org/10.1517/14712590903379502
- Sousa I.P. Jr., Burlandy F.M., Ferreira J.L., Alves J.C.S., Sousa-Júnior E.C., Tavares F.N., da Silva E.E. Re-emergence of a coxsackievirus A24 variant causing acute hemorrhagic conjunctivitis in Brazil from 2017 to 2018. Arch. Virol. 2019; 164(4): 1181–5. https://doi.org/10.1007/s00705-019-04157-5
- Holm-Hansen C.C., Midgley S.E., Fischer T.K. Global emergence of enterovirus D68: a systematic review. Lancet Infect. Dis. 2016; 16(5): e64–75. https://doi.org/10.1016/S1473-3099(15)00543-5
- Golitsyna L.N., Zverev V.V., Fomina S.G., Sozonov D.V., Novikova N.A. Enterovirus infection in the Russian Federation in 2008-2018. Infektsiya i immunitet. 2018; 8(4): 558. https://doi.org/10.15789/2220-7619-2018-4-3.16
- Sapega E.Yu., Butakova L.V., Trotsenko O.E., Zaytseva T.A., Garbuz Yu.A., Balakhonov S.V., et al. The role of molecular genetic analysis in detection of potential importation of enterovirus infection in the Khabarovsk region. Zdorov’e naseleniya i sreda obitaniya. 2018; (2): 44–51. https://doi.org/10.35627/2219-5238/2018-299-2-44-51 (in Russian)
- Yuan J., Shen L., Wu J., Zou X., Gu J., Chen J., et al. Enterovirus A71 proteins: structure and function. Front. Microbiol. 2018; 9: 286. https://doi.org/10.3389/fmicb.2018.00286
- Huang K.A. Structural basis for neutralization of enterovirus. Curr. Opin. Virol. 2021; 51: 199–206. https://doi.org/10.1016/j.coviro.2021.10.006
- Yang C., Deng C., Wan J., Zhu L., Leng Q. Neutralizing antibody response in the patients with hand, foot and mouth disease to enterovirus 71 and its clinical implications. Virol. J. 2011; 8(1): 306. https://doi.org/10.1186/1743-422X-8-306
- Luo S.T., Chiang P.S., Chao A.S., Liou G.Y., Lin R., Lin T.Y., et al. Enterovirus 71 maternal antibodies in infants, Taiwan. Emerg. Infect. Dis. 2009; 15(4): 581–4. https://doi.org/10.3201/eid1504.081550
- Zhu R., Cheng T., Yin Z., Liu D., Xu L., Li Y., et al. Serological survey of neutralizing antibodies to eight major enteroviruses among healthy population. Emerg. Microbes Infect. 2018; 7(1): 2. https://doi.org/10.1038/s41426-017-0003-z
- Zhu F., Xu W., Xia J., Liang Z., Liu Y., Zhang X., et al. Efficacy, safety, and immunogenicity of an enterovirus 71 vaccine in China. N. Engl. J. Med. 2014; 370(9): 818–28. https://doi.org/10.1056/NEJMoa1304923
- Lei D., Griffiths E., Martin J. WHO working group meeting to develop WHO Recommendations to assure the quality, safety and efficacy of enterovirus 71 vaccines. Vaccine. 2020; 38(32): 4917–23. https://doi.org/10.1016/j.vaccine.2020.05.001
- Huang L.M., Chiu C.H., Chiu N.C., Lin C.Y., Li M.T., Kuo T.Y., et al. Immunogenicity, safety, cross-reaction, and immune persistence of an inactivated enterovirus A71 vaccine in children aged from two months to 11 years in Taiwan. Vaccine. 2019; 37(13): 1827–35. https://doi.org/10.1016/j.vaccine.2019.02.023
- Cai Y., Ku Z., Liu Q., Leng Q., Huang Z. A combination vaccine comprising of inactivated enterovirus 71 and coxsackievirus A16 elicits balanced protective immunity against both viruses. Vaccine. 2014; 32(21): 2406–12. https://doi.org/10.1016/j.vaccine.2014.03.012
- Yang T., Xie T., Li H., Song X., Yue L., Wang X., et al. Immune responses of a CV-A16 live attenuated candidate strain and its protective effects in rhesus monkeys. Emerg. Microbes Infect. 2020; 9(1): 2136–46. https://doi.org/10.1080/22221751.2020.1823889
- Yeh M.T., Wang S., Yu C.K., Lin K.H., Lei H.Y., Su I.J., et al. A single nucleotide in stem loop II of 5’-untranslated region contributes to virulence of enterovirus 71 in mice. PLoS One. 2011; 6(11): e27082. https://doi.org/10.1371/journal.pone.0027082
- Meng T., Kwang J. Attenuation of human enterovirus 71 high-replication-fidelity variants in AG129 mice. J. Virol. 2014; 88(10): 5803–15. https://doi.org/10.1128/JVI.00289-14
- Tsa Y.H., Huang S.W., Hsieh W.S., Cheng C.K., Chang C.F., Wang Y.F., et al. Enterovirus A71 containing codon deoptimized VP1 and high-fidelity polymerase as next-generation vaccine candidate. J. Virol. 2019; 93(13): e02308-18. https://doi.org/10.1128/JVI.02308-1
- Yee P.T.I., Tan S.H., Ong K.C., Tan K.O., Wong K.T., Hassan S.S., et al. Development of live attenuated Enterovirus 71 vaccine strains that confer protection against lethal challenge in mice. Sci. Rep. 2019; 9(1): 4805. https://doi.org/10.1038/s41598-019-41285-z
- Lasrado N., Gangaplara A., Massilamany C., Arumugam R., Shelbourn A., Rasquinha M.T., et al. Attenuated strain of CVB3 with a mutation in the CAR interacting region protects against both myocarditis and pancreatitis. Sci. Rep. 2021; 11(1): 12432. https://doi.org/10.1038/s41598-021-90434-w
- Muslin C., Kain A.M., Bessaud M., Blondel B., Delpeyroux F. Recombination in enteroviruses, a multi-step modular evolutionary process. Viruses. 2019; 11(9): 859. https://doi.org/10.3390/v11090859
- Anasir M.I., Poh C.L. Advances in antigenic peptide-based vaccine and neutralizing antibodies against viruses causing hand, foot, and mouth disease. Int. J. Mol. Sci. 2019; 20(6): 1256. https://doi.org/:10.3390/ijms20061256
- Tian X., Su X., Li X., Li H., Li T., Zhou Z., et al. Protection against enterovirus 71 with neutralizing epitope incorporation within adenovirus type 3 hexon. PLoS One. 2012; 7(7): e41381. https://doi.org/10.1371/journal.pone.0041381
- Dai W., Xiong P., Zhang X., Liu Z., Chen J., Zhou Y., et al. Recombinant virus-like particle presenting a newly identified coxsackievirus A10 neutralization epitope induces protective immunity in mice. Antiviral Res. 2019; 164: 139–46. https://doi.org/10.1016/j.antiviral.2019.02.016
- Jiang L., Fan R., Sun S., Fan P., Su W., Zhou Y., et al. A new EV71 VP3 epitope in norovirus P particle vector displays neutralizing activity and protection in vivo in mice. Vaccine. 2015; 33(48): 6596–603. https://doi.org/10.1016/j.vaccine.2015.10.104
- Novikov D.V., Melent’ev D.A., Mokhonov V.V., Kashnikov A.Yu., Novikova N.A., Lapin V.A., et al. Construction of norovirus (Caliciviridae: Norovirus) virus-like particles containing VP1 of the Echovirus 30 (Picornaviridae: Enterovirus: Enterovirus B). Voprosy virusologii. 2021; 66(5): 383–9. https://doi.org/10.36233/0507-4088-79 (in Russian)
- Chung C.Y., Chen C.Y., Lin S.Y., Chung Y.C., Chiu H.Y., Chi W.K., et al. Enterovirus 71 virus-like particle vaccine: improved production conditions for enhanced yield. Vaccine. 2010; 28(43): 6951–7. https://doi.org/10.1016/j.vaccine.2010.08.052
- Li H.Y., Han J.F., Qin C.F., Chen R. Virus-like particles for enterovirus 71 produced from Saccharomyces cerevisiae potently elicits protective immune responses in mice. Vaccine. 2013; 31(32): 3281–7. https://doi.org/10.1016/j.vaccine.2013.05.019
- Zhang W., Dai W., Zhang C., Zhou Y., Xiong P., Wang S., et al. A virus-like particle-based tetravalent vaccine for hand, foot, and mouth disease elicits broad and balanced protective immunity. Emerg. Microbes Infect. 2018; 7(1): 94. https://doi.org/10.1038/s41426-018-0094-1
- Kim H.J., Son H., Lee S.W., Yoon Y., Hyeon J-Y., Chung G.T., et al. Efficient expression of enterovirus 71 based on virus-like particles vaccine. PLoS One. 2019; 14(3): e0210477. https://doi.org/10.1371/journal.pone.0210477
- Hankaniemi M.M., Baikoghli M.A., Stone V.M., Xing L., Vaatainen O., Soppela S., et al. Structural insight into CVB3-VLP non-adjuvanted vaccine. Microorganisms. 2020; 8(9): 1287. https://doi.org/10.3390/microorganisms8091287
- Zhang C., Ku Z., Liu Q., Wang X., Chen T., Ye X., et al. High-yield production of recombinant virus-like particles of enterovirus 71 in Pichia pastoris and their protective efficacy against oral viral challenge in mice. Vaccine. 2015; 33(20): 2335–41. https://doi.org/10.1016/j.vaccine.2015.03.034
- Yang Z., Gao F., Wang X., Shi L., Zhou Z., Jiang Y., et al. Development and characterization of an enterovirus 71 (EV71) virus-like particles (VLPs) vaccine produced in Pichia pastoris. Hum. Vaccin. Immunother. 2020; 16(7): 1602–10. https://doi.org/10.1080/21645515.2019.1649554
- Wang Z., Zhou C., Gao F., Zhu Q., Jiang Y., Ma X., et al. Preclinical evaluation of recombinant HFMD vaccine based on enterovirus 71 (EV71) virus-like particles (VLP): Immunogenicity, efficacy and toxicology. Vaccine. 2021; 39(31): 4296–305. https://doi.org/10.1016/j.vaccine.2021.06.031
- Zhang C., Zhang X., Zhang W., Dai W., Xie J., Ye L., et al. Enterovirus D68 virus-like particles expressed in Pichia pastoris potently induce neutralizing antibody responses and confer protection against lethal viral infection in mice. Emerg. Microbes Infect. 2018; 7(1): 3. https://doi.org/10.1038/s41426-017-0005-x
- Sherry L., Grehan K., Snowden J.S., Knight M.L., Adeyemi O.O., Rowlands D.J., et al. Comparative molecular biology approaches for the production of poliovirus virus-like particles using Pichia pastoris. mSphere. 2020; 5(2): e00838-19. https://doi.org/10.1128/mSphere.00838-19
补充文件
