Analysis of human coronaviruses circulation

Cover Image

Cite item

Abstract

Introduction. The novel SARS-CoV-2 coronavirus, which emerged at the end of 2019 and caused a worldwide pandemic, triggered numerous questions about the epidemiology of the novel COVID-19 disease and  about wellknown coronavirus infections, which used to be given little attention due to their mild symptoms.

The purpose: The routine screening-based multiyear retrospective observational study of prevalence and circulation patterns of epidemic-prone human coronaviruses in Moscow.

Material and methods. The real-time polymerase chain reaction was used to detect RNA of human coronaviruses (HCoVs) in nasal and throat swabs from 16,511 patients with an acute respiratory infection (ARI), aged 1 month to 95 years (children accounted for 58.3%) from January 2016 to March 2020, and swabs from 505 relatively healthy children in 2008, 2010 and 2011.

 

Results. HCoVs were yearly found in 2.6–6.1% of the examined patients; the detection frequency was statistically higher in adults than in children, regardless of sex. At the height of the disease incidence in December 2019, HCoVs were detected in 13.7% of the examined, demonstrating a two-fold increase as compared to the multi-year average for that month. The statistical frequency of HCoV detection in ARI pediatric patients under 6 years was significantly higher than in their healthy peers (3.7 vs 0.7%, p = 0.008).

Conclusion. HCoVs circulate annually, demonstrating a winter-spring seasonal activity pattern in the Moscow Region and reaching peak levels in December. Over the years of observation, the HCoV epidemic activity reached maximum levels in December 2019–February 2020 and decreased in March to the multi-year average. Amid a growing number of SARS-CoV-2 cases imported to Moscow in March 2020, the HCoV detection frequency dropped sharply, which can be explained by the competition between different coronaviruses and by the specificity of HCoV detection with the diagnostic test kit used in this study.

About the authors

S. B. Yatsyshina

Central Research Institute for Epidemiology of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare

Author for correspondence.
Email: svetlana.yatsyshina@pcr.ms
ORCID iD: 0000-0003-4737-941X

PhD. Sci. (Biol.), Head of the Scientific Group on the Development of New Diagnostic Methods of ARI diagnostics

Moscow, 111123

Russian Federation

M. V. Mamoshina

Central Research Institute for Epidemiology of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare

Email: grya@cmd.su
ORCID iD: 0000-0002-1419-7807
Moscow, 111123

Russian Federation

O. Yu. Shipulina

Central Research Institute for Epidemiology of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare

Email: olga.shipulina@pcr.ms
ORCID iD: 0000-0003-4679-6772
Moscow, 111123

Russian Federation

A. T. Podkolzin

Central Research Institute for Epidemiology of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare

Email: apodkolzin@pcr.ru
ORCID iD: 0000-0002-0044-3341
Moscow, 111123

Russian Federation

V. G. Akimkin

Central Research Institute for Epidemiology of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare

Email: akimkin@pcr.ms
ORCID iD: 0000-0003-4228-9044
Moscow, 111123

Russian Federation

References

  1. de Groot R.J., Baker S.C., Baric R., Enjuanes L., Gorbalenya A.E., Holmes K.V., et al. Family Coronaviridae. In: King A.M., Lefkowitz E., Adams M.J., Carstens E.B. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses. London, San Diego: Elsevier Academic Press; 2011.
  2. Cabeça T.K., Granato C., Bellei N. Epidemiological and clinical features of human coronavirus infections among different subsets of patients. Influenza Other Respir. Viruses. 2013; 7(6): 1040-7. DOI: http://doi.org/10.1111/irv.12101
  3. Bradburne A.F., Bynoe M.L., Tyrrell D.A. Effects of a «new» human respiratory virus in volunteers. Br. Med. J. 1967; 3(5568): 767-9. DOI: http://doi.org/10.1136/bmj.3.5568.767
  4. Esposito S., Bosis S., Niesters H.G.M., Tremolati E., Begliatti E., Rognoni A., et al. Impact of human coronavirus infections in otherwise healthy children who attended an emergency department. J. Med. Virol. 2006; 78(12): 1609-15. DOI: http://doi.org/10.1002/jmv.20745
  5. Dare R.K., Fry A.M., Chittaganpitch M., Sawanpanyalert P., Olsen S.J., Erdman D.D. Human coronavirus infections in rural Thailand: a comprehensive study using real-time reverse-transcription polymerase chain reaction assays. J. Infect. Dis. 2007; 196(9): 1321-8. DOI: http://doi.org/10.1086/521308
  6. Николаева С.В., Зверева З.А., Каннер Е.В., Яцышина С.Б., Усенко Д.В., Горелов А.В. Клинико-лабораторная характеристика коронавирусной инфекции у детей. Инфекционные болезни. 2018; 16(1): 35-9. DOI: http://doi.org/10.20953/1729-9225-2018-1-35-39
  7. Gaunt E.R., Hardie A., Claas E.C.J., Simmonds P., Templeton K.E. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. J. Clin. Microbiol. 2010; 48(8): 2940-7. DOI: http://doi.org/10.1128/JCM.00636-10
  8. Woo P.C.Y., Lau S.K.P., Chu C., Chan K., Tsoi H., Huang Y., et al. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol. 2005; 79(2): 884-95. DOI: http://doi.org/10.1128/JVI.79.2.884-895.2005
  9. Dent S., Neuman B.W. Purification of coronavirus virions for CryoEM and proteomic analysis. Methods Mol. Biol. 2015; 1282: 99-108. DOI: https://doi.org/ 10.1007/978-1-4939-2438-7_10
  10. Gralinski L.E., Baric R.S. Molecular pathology of emerging coronavirus infections. J. Pathol. 2015; 235(2): 185-95. DOI: http://doi.org/10.1002/path.4454
  11. Poland A.M., Vennema H., Foley J.E., Pedersen N.C. Two related strains of feline infectious peritonitis virus isolated from immunocompromised cats infected with a feline enteric coronavirus. J. Clin. Microbiol. 1996; 34(12): 3180-4.
  12. Woo P.C., Lau S.K., Huang Y., Yuen K.Y. Coronavirus diversity, phylogeny and interspecies jumping. Exp. Biol. Med. (Maywood). 2009; 234(10): 1117-27. DOI: http://doi.org/10.3181/0903-MR-94/
  13. Lu S., Wang Y., Chen Y., Wu B., Qin K., Zhao J., et al. Discovery of a novel canine respiratory coronavirus support genetic recombination among betacoronavirus1. Virus Res. 2017; 237: 7-13. DOI: http://doi.org/10.1016/j.virusres.2017.05.006
  14. Poon L.L.M., Chu D.K.W., Chan K.H., Wong O.K., Ellis T.M., Leung Y.H.C., et al. Identification of a novel coronavirus in bats. J. Virol. 2005; 79(4): 2001-9. DOI: http://doi.org/10.1128/JVI.79.4.2001-2009.2005
  15. Luk H.K.H., Li X., Fung J., Lau S.K.P., Woo P.C.Y. Molecular epidemiology, evolution and phylogeny of SARS coronavirus. Infect. Genet. Evol. 2019; 71: 21-30. DOI: http://doi.org/10.1016/j.meegid.2019.03.001
  16. Abdel-Moneim A.S. Middle East respiratory syndrome coronavirus (MERS-CoV): evidence and speculations. Arch. Virol. 2014; 159(7): 1575-84. DOI: http://doi.org/10.1007/s00705-014-1995-5
  17. Andersen K.G., Rambaut A., Lipkin W.I., Holmes E.C., Garry R.F. The proximal origin of SARS-CoV-2. Nat. Med. 2020; 26(4): 450-2. DOI: http://doi.org/10.1038/s41591-020-0820-9
  18. Corman V.M., Muth D., Niemeyer D., Drosten C. Hosts and sources of endemic human coronaviruses. Adv. Virus Res. 2018; 100: 163-88. DOI: http://doi.org/10.1016/bs.aivir.2018.01.001
  19. Ye Z.W., Yuan S., Yuen K.S., Fung S.Y., Chan C.P., Jin D.Y. Zoonotic origins of human coronaviruses. Int. J. Biol. Sci. 2020; 16(10): 1686-97. DOI: http://doi.org/10.7150/ijbs.45472
  20. Wertheim J.O., Chu D.K., Peiris J.S., Kosakovsky Pond S.L., Poon L.L. A case for the ancient origin of coronaviruses. J. Virol. 2013; 87(12): 7039-45. DOI: http://doi.org/10.1128/JVI.03273-12
  21. Jevšnik M., Uršič T., Zigon N., Lusa L., Krivec U., Petrovec M. Coronavirus infections in hospitalized pediatric patients with acute respiratory tract disease. BMC Infect. Dis. 2012; 12: 365. DOI: http://doi.org/10.1186/1471-2334-12-365
  22. Varghese L., Zachariah P., Vargas C., LaRussa P., Demmer R.T., Furuya Y.E., et al. Epidemiology and clinical features of human coronaviruses in the pediatric population. J. Pediatric. Infect. Dis. Soc. 2018; 7(2): 151-8. DOI: http://doi.org/10.1093/jpids/pix027
  23. Monto A.S., Cowling B.J., Peiris J.S.M. Coronaviruses. In: Kaslow R.A., Stanberry L.R., Le Duc J.W., eds. Viral Infections of Humans: Epidemiology and Control. Boston, MA: Springer US; 2014: 199-223. DOI: http://doi.org/10.1007/978-1-4899-7448-8_10
  24. Dominguez S.R., Robinson C.C., Holmes K.V. Detection of four human coronaviruses in respiratory infections in children: a oneyear study in Colorado. J. Med. Virol. 2009; 81(9): 1597-604. DOI: http://doi.org/10.1002/jmv.21541
  25. Jevšnik M., Steyer A., Pokorn M., Mrvič T., Grosek Š., Strle F., et al. The role of human coronaviruses in children hospitalized for acute bronchiolitis, acute gastroenteritis, and febrile seizures: a 2-year prospective study. PLoS One. 2016; 11(5): e0155555. DOI: http://doi.org/10.1371/journal.pone.0155555
  26. Vabret A., Dina J., Gouarin S., Petitjean J., Tripey V., Brouard J., et al. Human (non-severe acute respiratory syndrome) coronavirus infections in hospitalised children in France. J. Paediatr. Child Health. 2008; 44(4): 176-81. DOI: http://doi.org/10.1111/j.1440-1754.2007.01246.x.
  27. Friedman N., Alter H., Hindiyeh M., Mendelson E., Shemer Avni Y., Mandelboim M. Human coronavirus infections in Israel: epidemiology, clinical symptoms and summer seasonality of HCoV-HKU1. Viruses. 2018; 10(10): 515. DOI: http://doi.org/10.3390/v10100515
  28. Яцышина С.Б., Спичак Т.В., Ким С.С., Воробьева Д.А., Агеева М.Р., Горелов А.В. и др. Выявление респираторных вирусов и атипичных бактерий у больных пневмонией и здоровых детей за десятилетний период наблюдения. Педиатрия. Журнал им. Г.Н. Сперанского. 2016; 95(2): 43-50.
  29. Sauro J., Lewis J. Estimating completion rates from small samples using binomial confidence intervals: comparisons and recommendations. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2005; 49(24): 2100-3. DOI: http://doi.org/10.1177/154193120504902407
  30. Heimdal I., Moe N., Krokstad S., Christensen A., Skanke L.H., Nordbø S.A., et al. Human coronavirus in hospitalized children with respiratory tract infections: a 9-year population-based study from Norway. J. Infect. Dis. 2019; 219(8): 1198-206. DOI: http://doi.org/10.1093/infdis/jiy646
  31. Chiu S.S., Chan K.H., Chu K.W., Kwan S.W., Guan Y., Poon L.L.M., et al. Human coronavirus NL63 infection and other coronavirus infections in children hospitalized with acute respiratory disease in Hong Kong, China. Clin. Infect. Dis. 2005; 40(12): 1721-9. DOI: http://doi.org/10.1086/430301
  32. Li Y., Reeves R.M., Wang X., Bassat Q., Brooks W.A., Cohen C., et al. Global patterns in monthly activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus: a systematic analysis. Lancet Glob. Health. 2019; 7(8): e1031-45. DOI: http://doi.org/10.1016/S2214-109X(19)30264-5
  33. Biggs H.M., Killerby M.E., Haynes A.K., Dahl R.M., Gerber S.I., Watson J.T. Human coronavirus circulation in the USA, 2014 ‒ 2017. Open. Forum Infect. Dis. 2017; 4(Suppl. 1): S311-2. DOI: http://doi.org/10.1093/ofid/ofx163.727
  34. Gorse G.J., Patel G.B., Vitale J.N., O’Connor T.Z. Prevalence of antibodies to four human coronaviruses is lower in nasal secretions than in serum. Clin. Vaccine Immunol. 2010; 17(12): 1875-80. DOI: http://doi.org/10.1128/CVI.00278-10
  35. Chan C.M., Tse H., Wong S.S.Y., Woo P.C.Y., Lau S.K.P., Chen L., et al. Examination of seroprevalence of coronavirus HKU1 infection with S protein-based ELISA and neutralization assay against viral spike pseudotyped virus. J. Clin. Virol. 2009; 45(1): 54-60. DOI: http://doi.org/10.1016/j.jcv.2009.02.011
  36. McIntosh K., Dees J.H., Becker W.B., Kapikian A.Z., Chanock R.M. Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. Proc. Natl. Acad. Sci. USA. 1967; 57(4): 933-40. DOI: http://doi.org/10.1073/pnas.57.4.933

Copyright (c) 2020 Yatsyshina S.B., Mamoshina M.V., Shipulina O.Y., Podkolzin A.T., Akimkin V.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies