Development of the drug oncolytic immunotherapy based on vaccinia viruses (Vaccinia virus, Orthopoxvirus, Chordopoxvirinae, Poxviridae) against breast cancer

Cover Image

Cite item

Full Text

Abstract

Introduction. Currently, new directions in cancer therapy are actively developing, one of which is oncolytic immunotherapy. This approach would be to use of viruses as cancer specific cytolytic agents capable of stimulating both the tumor-specific and non-specific immune response.

The objective paper was obtain a recombinant vaccinia virus containing genes encoding immunostimulating molecules and study oncolytic and immunostimulating properties of recombinant virus.

Material and methods. MTT test, ELISA, methods of transient dominant selection.

Results. The recombinant vaccinia virus (L-IVP_oncoB) were obtained with deletion of the gene encoding thymidine kinase and had an integrated gene encoding GM-CSF. Also the virus have deletion of the gene encoding viral growth factor and integrated genes encoding synthetic tumor-specific polyepitopic immunogens. It was shown that the modifications made to the viral genome did not affect the growth characteristics of the virus when cultured on CV-1 and 4647 cell cultures, and the cytopathogenic efficacy of the virus was determined in relation to cancer cultures of cells of various genesis. In in vivo experiment, it was revealed that the polyepitopic construct in the genome L-IVP_oncoB is able to initiate a change in the profile of cytokines.

Discussion. The obtained data characterized L-IVP_oncoB as a promising cytopathogenic and immunostimulating agent and showed the need for further study of its properties as means of oncolytic immunotherapy. Conclusion. The basic experiments on the evaluation of the biological properties of the obtained L-IVP_oncoB, which are necessary for the characterization of the oncolytic virus, have been carried out.

About the authors

T. V. Bauer

State Research Center of Virology and Biotechnology «Vector»

Author for correspondence.
Email: bauer_tv@vector.nsc.ru
ORCID iD: 0000-0002-4954-9905

Tatyana V. Bauer, PhD student, Junior Research Scientistof the department of genomic research.

Koltsovo, Novosibirsk Region, 630559

Russian Federation

T. V. Tregubchak

State Research Center of Virology and Biotechnology «Vector»

Email: fake@neicon.ru
ORCID iD: 0000-0001-9608-2044
Koltsovo, Novosibirsk Region, 630559 Russian Federation

A. Z. Maksyutov

State Research Center of Virology and Biotechnology «Vector»

Email: fake@neicon.ru
ORCID iD: 0000-0002-4027-8299
Koltsovo, Novosibirsk Region, 630559 Russian Federation

R. A. Maksyutov

State Research Center of Virology and Biotechnology «Vector»

Email: fake@neicon.ru
ORCID iD: 0000-0003-2317-4153
Koltsovo, Novosibirsk Region, 630559 Russian Federation

I. V. Kolosova

State Research Center of Virology and Biotechnology «Vector»

Email: fake@neicon.ru
ORCID iD: 0000-0003-1314-281X
Koltsovo, Novosibirsk Region, 630559 Russian Federation

E. V. Gavrilova

State Research Center of Virology and Biotechnology «Vector»

Email: fake@neicon.ru
ORCID iD: 0000-0002-7118-5749
Koltsovo, Novosibirsk Region, 630559 Russian Federation

References

  1. Youlden D.R., Cramb S.M., Dunn N.A., Muller J.M., Pyke C.M., Baade P.D. The descriptive epidemiology of female breast cancer: an international comparison of screening, incidence, survival and mortality. Cancer Epidemiol. 2012; 36(3): 237-48. https://doi.org/10.1016/j.canep.2012.02.007
  2. Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2017. CA Cancer J. Clin. 2017; 67(1): 7-30. https://doi.org/10.3322/caac.21387
  3. Rouzier R., Perou C.M., Symmans W.F., Ibrahim N., Cristofanilli M., Anderson K., et al. Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin. Cancer Res. 2005; 11(16): 5678-85. https://doi.org/10.1158/1078-0432.CCR-04-2421
  4. Nixon N.A., Hannouf M.B., Verma S. A review of the value of human epidermal growth factor receptor 2 (HER2)-targeted therapies in breast cancer. Euro. J. Cancer. 2018; 89: 72-81. https://doi.org/10.1016/j.ejca.2017.10.037
  5. Fong P.C., Boss D.S., Yap T.A., Tutt A., Wu P., Mergui-Roelvink M., et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 2009; 361(2): 123-34. https://doi.org/10.1056/NEJMoa0900212
  6. Butti R., Gunasekaran V.P., Kumar T.V.S., Banerjee P., Kundu G.C. Breast cancer stem cells: Biology and therapeutic implications. Int. J. Biochem. Cell. Biol. 2019; 107: 38-52. https://doi.org/10.1016/j.biocel.2018
  7. Delgado-Bellido D., Serrano-Saenz S., Fernández-Cortés M., Oliver F.J. Vasculogenic mimicry signaling revisited: focus on nonvascular VE-cadherin. Mol. Cancer. 2017; 16(1): 65. https://doi.org/10.1186/s12943-017-0631-x
  8. Economopoulou P., Kaklamani V.G., Siziopikou K. The role of Cancer stem cells in breast Cancer initiation and progression: potential Cancer stem cell-directed therapies. Oncologist. 2012; 17(11): 1394-401. https://doi.org/10.1634/theoncologist.2012-0163
  9. Garber K. China approves world’s first oncolytic. J. Natl. Cancer Inst. 2006; 98(5): 298-300. https://doi.org/10.1093/jnci/djj111
  10. Jaunalksne I., Brokāne L., Petroška D., Rasa A., Alberts P. ECHO-7 oncolytic virus Rigvir® in an adjuvant setting for stage I uveal melanoma; A retrospective case report. Am. J. Ophthalmol. Case Rep. 2020; 17: 100615. http://doi.org/10.1016/j.ajoc.2020.100615
  11. Adam J., Robertson J., Donegan E., Voicechovskaja I. NICE guidance for talimogene laherparepvec for unresectable metastatic melanoma. Lancet Oncol. 2016; 17(11): 1485-6. https://doi.org/10.1016/S1470-2045(16)30489-2
  12. Falkner F.G., Moss B. Transient dominant selection of recombinant vaccinia viruses. J. Virol. 1990; 64(6): 3108-11.
  13. Cheever M.A., Allison J.P., Ferris A.S., Finn O.J., Hastings B.M., Hecht T.T., et al. The Prioritization of Cancer Antigens: A National Cancer Institute Pilot Project for the Acceleration of Translational Research. Clin. Cancer Res. 2009; 15(17): 5323-37. https://doi.org/10.1158/1078-0432.CCR-09-0737
  14. Schlom J. Therapeutic Cancer Vaccines: Current Status and Moving Forward. J. Natl. Cancer Inst. 2012; 104(8): 599-613. https://doi.org/10.1093/jnci/djs033
  15. Milani A., Sangiolo D., Aglietta M., Valabrega G. Recent advances in the development of breast cancer vaccines. Breast Cancer (Dove Med. Press). 2014; 6: 159-68. https://doi.org/10.2147/BCTT.S38428
  16. Thomson S.A., Khanna R., Gardner J., Burrows S.R., Coupar B., Moss D.J., et al. Minimal epitopes expressed in a recombinant polyepitope protein are processed and presented to CD8+ cytotoxic T cells: implications for vaccine design. Proc. Natl. Acad. Sci. USA. 1995; 92(13): 5845-9. https://doi.org/10.1073/pnas.92.13.5845
  17. Eslami N.S., Shokrgozar M.A., Mousavi A., Azadmanesh K., Nomani A., Apostolopoulos V., et al. Simultaneous immunisation with a Wilms’ tumour 1 epitope and its ubiquitin fusions results in enhanced cell mediated immunity and tumour rejection in C57BL/6 mice. Mol. Immunol. 2012; 51(3-4): 325-31. https://doi.org/10.1016/j.molimm.2012.03.033
  18. Seyed N., Taheri T., Vauchy C., Dosset M., Godet Y., Eslamifar A., et al. Immunogenicity Evaluation of a Rationally Designed Polytope Construct Encoding HLA-A*0201 Restricted Epitopes Derived from Leishmania major Related Proteins in HLA-A2/DR1 Transgenic Mice: Steps toward Polytope Vaccine. PLoS One. 2014; 9(10): e108848. https://doi.org/10.1371/journal.pone.0108848
  19. Nemec A.A., Wallace S.S., Sweasy J.B. Variant base excision repair proteins: Contributors to genomic instability. Semin. Cancer Biol. 2010; 20(5): 320-8. https://doi.org/10.1016/j.semcancer.2010.10.010
  20. Horii R., Akiyama F., Kasumi F., Koike M., Sakamoto G. Spontaneous healing of breast cancer. Breast Cancer. 2005; 12(2): 140-4. https://doi.org/10.2325/jbcs.12.140
  21. Allegrezza M.J., Conejo-Garcia J.R. Targeted Therapy and Immunosuppression in the Tumor Microenvironment. Trends Cancer. 2017; 3(1): 19-27. https://doi.org/10.1016/j.trecan.2016.11.009
  22. Peres L.P., da Luz F.A., Pultz B.A., Brígido P.C., de Araújo R.A., Goulart L.R. Peptide vaccines in breast cancer: The immunological basis for clinical response. Biotechnol. Adv. 2015; 33(8): 1868-77. https://doi.org/10.1016/j.biotechadv.2015.10.013
  23. Borsig L., Wolf M.J., Roblek M., Lorentzen A., Heikenwalder M. Inflammatory chemokines and metastasis — tracing the accessory. Oncogene. 2013; 33(25): 3217-24. https://doi.org/10.1038/onc.2013.272
  24. Salazar-Onfray F., López M.N., Mendoza-Naranjo A. Paradoxical effects of cytokines in tumor immune surveillance and tumor immune escape. Cytokine Growth Factor Rev. 2007; 18(1-2): 171-82. https://doi.org/10.1016/j.cytogfr.2007.01.015
  25. Chen Q., Daniel V., Maher D.W., Hersey P. Production of IL-10 by melanoma cells: examination of its role in immunosuppression mediated by melanoma. Int. J. Cancer. 1994; 56(5): 755-60. https://doi.org/10.1002/ijc.2910560524
  26. Giovarelli M., Musiani P., Modesti A., Dellabona P., Casorati G., Allione A., et al. Local release of IL-10 by transfected mouse mammary adenocarcinoma cells does not suppress but enhances antitumor reaction and elicits a strong cytotoxic lymphocyte and antibody-dependent immune memory. J. Immunol. 1995; 155(6): 3112-23.
  27. Chen W., Zlotnik A. IL-10: a novel cytotoxic T cell differentiation factor. J. Immunol. 1991; 147(2): 528-34.
  28. Kaufman H.L., Rao J.B., Irivine K.R., Bronte V., Rosenberg S.A., Restifo N.P. Interleukin-10 enhances the therapeutic effectiveness of a recombinant poxvirus-based vaccine in an experimental murine tumor model. J. Immunother. 1999; 22(6): 489-96. https://doi.org/10.1097/00002371-199911000-00003

Copyright (c) 2020 Bauer T.V., Tregubchak T.V., Maksyutov A.Z., Maksyutov R.A., Kolosova I.V., Gavrilova E.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies