Etiology of epidemic outbreaks COVID-19 in Wuhan, Hubei province, Chinese People Republic associated with 2019-nCoV (Nidovirales, Coronaviridae, Coronavirinae, Betacoronavirus, Subgenus Sarbecovirus): lessons of SARS-CoV outbreak

Cover Image

Cite item

Full Text

Abstract

Results of analysis of phylogenetic, virological, epidemiological, ecological, clinical data of COVID-19 outbreaks in Wuhan, China (PRC) in comparison with SARS-2002 and MERS-2012 outbreaks allow to conclude:

– the etiological agent of COVID-19 is coronavirus (2019-CoV), phylogenetically close to the SARS-CoV, isolated from human, and SARS-related viruses isolated from bats (SARS-related bat CoV viruses). These viruses belong to the Sarbecovirus subgenus, Betacoronavirus genus, Orthocoronavirinae subfamily, Coronaviridae family (Cornidovirinea: Nidovirales). COVID-19 is a variant of SARS-2002 and is different from MERS-2012 outbreak, which were caused by coronavirus belonged to the subgenus Merbecovirus of the same genus;

– according to the results of phylogenetic analysis of 35 different betacoronaviruses, isolated from human and from wild animals in 2002-2019, the natural source of COVID-19 and SARS-CoV (2002) is bats of Rhinolophus genus (Rhinolophidae) and, probably, some species of other genera. An additional reservoir of the virus could be an intermediate animal species (snakes, civet, hedgehogs, badgers, etc.) that are infected by eating of infected bats. SARS-like coronaviruses circulated in bats in the interepidemic period (2003-2019);

– seasonal coronaviruses (subgenus Duvinacovirus, Alphacoronavirus) are currently circulating (November 2019

– January 2020) in the European part of Russia, Urals, Siberia and the Far East of Russia, along with the influenza viruses A(H1N1)pdm09, A(H3N2), and В, as well as six other respiratory viruses (HPIV, HAdV, HRSV, HRV, HBoV, and HMPV)

About the authors

D. K. Lvov

D.I. Ivanovsky Institute of Virology of National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya

Author for correspondence.
Email: dk_lvov@mail.ru
ORCID iD: 0000-0001-8176-6582

Dmitry K. Lvov, Doctor of Medical Sciences, Professor, Academician of RAS, Head of the Department of Ecology of Viruses, Head of Ecology and Epidemiology of Influenza Center.

Moscow, 123098

Russian Federation

S. V. Alkhovsky

D.I. Ivanovsky Institute of Virology of National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya

Email: fake@neicon.ru
ORCID iD: 0000-0001-6913-5841
Moscow, 123098 Russian Federation

L. V. Kolobukhina

D.I. Ivanovsky Institute of Virology of National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya

Email: fake@neicon.ru
ORCID iD: 0000-0001-5775-3343
Moscow, 123098 Russian Federation

E. I. Burtseva

D.I. Ivanovsky Institute of Virology of National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya

Email: fake@neicon.ru
ORCID iD: 0000-0003-2518-6801
Moscow, 123098 Russian Federation

References

  1. de Groot R.J., Baker S.C., Baric R., Enjuanes L., Gorbalenya A.E., Holmes K.V., et al. Family Coronaviridae. In: King A.M., Adams M.J., Carstens E.B., Lefkowitz E.J., eds. Virus Taxonomy: Classification and Nomenclature of Viruses. Ninth Report of the International Committee on Taxonomy of Viruses. London: Elsevier; 2012: 806-28.
  2. Львов Д.К., Щелканов М.Ю. Коронавирусы (Coronaviridae). В кн.: Львов Д.К., ред. Руководство по вирусологии. Вирусы и вирусные инфекции человека и животных. М.: МИА; 2013: 211-8.
  3. Perlman S., Gallagher T., Snijder E.J. Nidoviruses. Washington: ASM press; 2008.
  4. Woo P.C., Lau S.K., Huang Y., Yuen K.Y. Coronavirus diversity, phylogeny and interspecies jumping. Exp. Biol. Med. (Maywood). 2009; 234(10): 1117-27. doi: 10.3181/0903-MR-94
  5. Cowley J.A., Dimmock C.M., Spann K.M., Walker P.J. Gill-associated virus of Penaeus monodon prawns: an invertebrate virus with ORF1a and ORF1b genes related to arteri– and coronaviruses. J. Gen. Virol. 2000; 81(Pt. 6): 1473-84. doi: 10.1099/0022-1317-81-6-1473
  6. Decaro N., Buonavoglia C. An update on canine coronaviruses: viral evolution and pathobiology. Vet. Microbiol. 2008; 132(3-4): 221-34. doi: 10.1016/j.vetmic.2008.06.007
  7. Cavanagh D. Coronaviruses in poultry and other birds. Avian Pathol. 2005; 34(6): 439-48. doi: 10.1080/03079450500367682
  8. Chu D.K., Leung C.Y., Gilbert M., Joyner P.H., Ng E.M., Tse T.M., et al. Avian coronavirus in wild aquatic birds. J. Virol. 2011; 85(23): 12815-20. doi: 10.1128/JVI.05838-11
  9. Traavik T., Mehl R., Kjeldsberg E. “Runde” viurs, a coronaviruslike agent associated with seabirds and ticks. Arch. Virol. 1977; 55(1-2): 25-38. http://doi.org/10.1007/bf01314476
  10. Gagneur A., Vallet S., Talbot P.J., Legrand-Quillien M.C., Picard B., Payan C., et al. Outbreaks of human coronavirus in a pediatric and neonatal intensive care unit. Eur. J. Pediatr. 2008; 167(12): 1427-34. http://doi.org/10.1007/s00431-008-0687-0
  11. Колобухина Л.В., Львов Д.К. Коронавирусная инфекция, тяжелый острый респираторный синдром. В кн.: Львов Д.К., ред. Руководство по вирусологии. Вирусы и вирусные инфекции человека и животных. М.: МИА; 2013: 588-92.
  12. Xu J., Hu J., Wang J., Han Y., Hu Y., Wen J., et al. Genome organization of the SARS-CoV. Genomics Proteomics Bioinformatics. 2003; 1(3): 226-35. http://doi.org/10.1016/s1672-0229(03)01028-3
  13. Li W., Shi Z., Yu M., Ren W., Smith C., Epstein J.H., et al. Bats are natural reservoirs of SARS-like coronaviruses. Science. 2005; 310(5748): 676-9. http://doi.org/10.1126/science.1118391
  14. Woo P.C., Lau S.K., Lam C.S., Lau C.C., Tsang A.K., Lau J.H., et al. Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J. Virol. 2012; 86(7): 3995-4008. http://doi.org/10.1128/JVI.06540-11
  15. Guan Y., Zheng B.J., He Y.Q., Liu X.L., Zhuang Z.X., Cheung C.L., et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science. 2003; 302(5643): 276-8. http://doi.org/10.1126/science.1087139
  16. Annan A., Baldwin H.J., Corman V.M., Klose S.M., Owusu M., Nkrumah E.E., et al. Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe. Emerg. Infect. Dis. 2013; 19(3): 456-9. http://doi.org/10.3201/eid1903.121503
  17. Balboni A., Battilani M., Prosperi S. The SARS-like coronaviruses: the role of bats and evolutionary relationships with SARS coronavirus. New Microbiol. 2012; 35(1): 1-16.
  18. Wang L.F., Shi Z., Zhang S., Field H., Daszak P., Eaton B.T. Review of bats and SARS. Emerg. Infect. Dis. 2006; 12(12): 1834-40. http://doi.org/10.3201/eid1212.060401
  19. Dominguez S.R., O’Shea T.J., Oko L.M., Holmes K.V. Detection of group 1 coronaviruses in bats in North America. Emerg. Infect. Dis. 2007; 13(9): 1295-300. http://doi.org/10.3201/eid1309.070491
  20. Gloza-Rausch F., Ipsen A., Seebens A., Gottsche M., Panning M., Drexler J.F., et al. Detection and prevalence patterns of group I coronaviruses in bats, northern Germany. Emerg. Infect. Dis. 2008; 14(4): 626-31. http://doi.org/10.3201/eid1404.071439
  21. Lau S.K., Woo P.C., Li K.S., Huang Y., Tsoi H.W., Wong B.H., et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc. Natl. Acad. Sci. USA. 2005; 102(39): 14040-5. http://doi.org/10.1073/pnas.0506735102
  22. Tong S., Conrardy C., Ruone S., Kuzmin I.V., Guo X., Tao Y., et al. Detection of novel SARS-like and other coronaviruses in bats from Kenya. Emerg. Infect. Dis. 2009; 15(3): 482-5. http://doi.org/10.3201/eid1503.081013
  23. Zhou P., Li H., Wang H., Wang L.F., Shi Z. Bat severe acute respiratory syndrome-like coronavirus ORF3b homologues display different interferon antagonist activities. J. Gen. Virol. 2012; 93(Pt. 2): 275-81. http://doi.org/10.1099/vir.0.033589-0
  24. Summary table of SARS cases by country, 1 November 2002 – 7 August 2003. Available at: https://www.who.int/csr/sars/country/2003_08_15/en/
  25. Покровский В.И., Малеев В.В., Киселев О.И. Коронавирус SARS – возбудитель атипичной пневмонии. Временые методические рекомендации. М.; 2003.
  26. Чучалин А.Г. Синдром острого повреждения легких. РМЖ. 2006; 14(22): 1582.
  27. Riley S., Fraser C., Donnelly C.A., Ghani A.C., Abu-Raddad L.J., Hedley A.J., et al. Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions. Science. 2003; 300(5627): 1961-6. http://doi.org/10.1126/science.1086478
  28. Lipsitch M., Cohen T., Cooper B., Robins J.M., Ma S., James L., et al. Transmission dynamics and control of severe acute respiratory syndrome. Science. 2003; 300(5627): 1966-70. http://doi.org/10.1126/science.1086616
  29. Wang J.T., Sheng W.H., Fang C.T., Chen Y.C., Wang J.L., Yu C.J., et al. Clinical manifestations, laboratory findings, and treatment outcomes of SARS patients. Emerg. Infect. Dis. 2004; 10(5): 818-24. http://doi.org/10.3201/eid1005.030640
  30. Drosten C., Gunther S., Preiser W., van der Werf S., Brodt H.R., Becker S., et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 2003; 348(20): 1967-76. http://doi.org/10.1056/NEJMoa030747
  31. Tan E.L., Ooi E.E., Lin C.Y., Tan H.C., Ling A.E., Lim B., et al. Inhibition of SARS coronavirus infection in vitro with clinically approved antiviral drugs. Emerg. Infect. Dis. 2004; 10(4): 581-6. http://doi.org/10.3201/eid1004.030458
  32. Дерябин П.Г., Зарубаев В.В. К вопросу о коронавирусной инфекции и перспективах профилактики и лечения препаратами интерферона альфа-2в человеческого рекомбинантного. Инфекционные болезни. 2014; 12(3): 32-4.
  33. de Groot R.J., Baker S.C., Baric R.S., Brown C.S., Drosten C., Enjuanes L., et al. Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. J. Virol. 2013; 87(14): 7790-2. http://doi.org/10.1128/JVI.01244-13
  34. Reusken C.B., Haagmans B.L., Muller M.A., Gutierrez C., Godeke G.J., Meyer B., et al. Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study. Lancet Infect. Dis. 2013; 13(10): 859-66. http://doi.org/10.1016/S1473-3099(13)70164-6
  35. Perera R.A., Wang P., Gomaa M.R., El-Shesheny R., Kandeil A., Bagato O., et al. Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013. Euro Surveill. 2013; 18(36): pii20574. http://doi.org/10.2807/1560-7917.es2013.18.36.20574
  36. Стрелков П.П. Отряд Chiroptera, Blumenbach, 1779 – Рукокрылые. В кн.: Громов И.М., Баранова Г.И., ред. Каталог млекопитающих СССР. Плиоцен – современность. Ленинград: Наука; 1981: 31-53.
  37. Surveillance case definitions for human infection with novel coronavirus (nCoV). Available at: https://www.who.int/internal-publications-detail/surveillance-case-definitions-for-human-infectionwithnovel-coronavirus-(ncov)
  38. Disease commodity package – Novel Coronavirus (nCoV). Available at: https://www.who.int/publications-detail/disease-commodity-package---novel-coronavirus-(ncov)
  39. WHO recommendations to reduce risk of transmission of emerging pathogens from animals to humans in live animal markets. Available at: https://www.who.int/health-topics/coronavirus/who-recommendations-to-reduce-risk-of-transmission-of-emerging-pathogens-from-animals-to-humans-in-live-animal-markets
  40. Laboratory testing for 2019 novel coronavirus (2019-nCoV) in suspected human cases. Available at: https://www.who.int/publications-detail/laboratory-testing-for-2019-novel-coronavirus-insuspected-human-cases-20200117
  41. European surveillance for human infection with novel coronavirus (2019-nCoV). Available at: https://www.ecdc.europa.eu/en/european-surveillance-human-infection-novel-coronavirus-2019-ncov
  42. European Virus Archive – GLOBAL. Available at: https://www.european-virus-archive.com/
  43. Diagnostic detection of Wuhan coronavirus 2019 by realtime RTPCR. Available at: https://www.who.int/docs/defaultsource/coronaviruse/wuhan-virus-assay-v1991527e5122341d99287a1b17c111902.pdf?sfvrsn=d381fc88_2
  44. Novel Coronavirus (2019-nCoV) situation reports (WHO). Available at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
  45. WHO, Western Pacific Region. Avian Influenza Weekly Update 2019. Available at: https://iris.wpro.who.int/handle/10665.1/14328
  46. Львов Д.К. Грипп и другие новые и возвращающиеся инфекции Северной Евразии: глобальные последствия. В кн.: Федеральный справочник здравоохранения России. Том 11. М.; 2010: 209-19.
  47. Львов Д.К., Борисевич С.В., Альховский С.В., Бурцева Е.И. Актуальные подходы анализа вирусных геномов в интересах биобезопасности. Инфекционные болезни: новости, мнения, обучение. 2019; 8(2): 96-101. http://doi.org/10.24411/2305-3496-2019-12012
  48. Lvov D.K., Shchelkanov M.Y., Alkhovsky S.V., Deryabin P.G. Zoonotic Viruses of Northern Eurasia. Taxonomy and Ecology. London: Academic Press, Elsevier; 2015.
  49. WHO. Coronavirus disease 2019 (COVID-19). Sitation report - 40 (29 February 2020).

Copyright (c) 2020 Lvov D.K., Alkhovsky S.V., Kolobukhina L.V., Burtseva E.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies