CROSS-PROTECTIVE PROPERTIES OF AN INFLUENZA VACCINE BASED ON HBC4M2E RECOMBINANT PROTEIN

Cover Page

Cite item

Full Text

Abstract

One of the main problems in the area of influenza prophylaxis and pandemic prevention is the development of cross-reactive vaccines, i.e. vaccines directed against all subtypes of human influenza viruses. Such vaccines are being developed in many countries for more than 10 years. A number of vaccines are presently undergoing clinical trials. We created Uniflu candidate vaccine based on recombinant HBc4M2e protein consisting of 4 tandem-connected copies of the highly conserved ectodomain of M2 protein of the influenza A virus. These 4 copies were genetically fused to the carrier protein, namely hepatitis B core antigen. Commercially available Derinat was used as adjuvant in the candidate vaccine. Preclinical studies on laboratory animals (mice, ferrets) demonstrated that immunization with Uniflu leads to significantly higher level of specific immunoglobulins in the blood and bronchoalveolar lavages. Moreover, it produces immunoglobulins belonging to subtype IgG2a that is the most important mediator of antibody-dependent cytotoxicity. The vaccine under review stimulates the proliferation of T-lymphocytes, as well as the formation of CD4+ and CD8+ T-cells synthesizing ɣ-IFN. When infected with the lethal doses (5 LD50) of influenza A viruses of the subtypes H1N1, H2N2, H3N2, and H1N1pdm09, immunized animals typically developed mild form of illness. This kept them alive in 90-100% of cases, which demonstrated almost complete protection from death. Replication of the virus in the lungs of immunized mice was reduced by 1.8-4.8 log10. High immunogenicity of the vaccine, and reduced clinical symptoms following experimental infection, were demonstrated in ferrets as well. The developed recombinant vaccine Uniflu has high specific activity and cross-protection. Uniflu can be proposed as pre-pandemic vaccine, provided that it passes clinical trials.

About the authors

L. M. Tsybalova

Research Institute of Influenza

Author for correspondence.
Email: sovet@influenza.spb.ru
Russian Federation

L. A. Stepanova

Research Institute of Influenza

Email: noemail@neicon.ru
Russian Federation

M. A. Shuklina

Research Institute of Influenza

Email: noemail@neicon.ru
Russian Federation

S. V. Petrov

Research Institute of Influenza

Email: noemail@neicon.ru
Russian Federation

A. A. Kovaleva

Research Institute of Influenza

Email: noemail@neicon.ru
Russian Federation

M. V. Potapchuk

Research Institute of Influenza

Email: noemail@neicon.ru
Russian Federation

A. A. Shaldzhan

Research Institute of Influenza

Email: noemail@neicon.ru
Russian Federation

Y. A. Zabrodskaya

Research Institute of Influenza

Email: noemail@neicon.ru
Russian Federation

V. V. Egorov

Research Institute of Influenza

Email: noemail@neicon.ru
Russian Federation

References

  1. Wood J.M. Developing vaccines against pandemic influenza. Phil. Trans. R. Soc. Lond. B Biol. Sci. 2001; 356(1416): 1953-60.
  2. Neirynck S., Deroot I., Saelans X., Vanlandschoot P., Jou W., Fiers W. A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat. Med. 1999; 5(10): 1157-63.
  3. Fiers W., De Filette M., El Bakkouri K., Schepens B., Roose K., Schotsaert M., et al. M2e-based universal influenza A vaccine. Vaccine. 2009; 27(45): 6280-3.
  4. Steel J., Lowen A., Wang T.T., Yondola M., Gao Q., Haye K., et al. Influenza virus vaccine based on the conserved hemagglutinin stalk domain. MBio. 2010; 1(1): е00018-10.
  5. Hessel A., Savidis-Dacho H., Coulibaly S., Portsmouth D., Kreil T.R., Crowe B.A., et al. MVA vectors expressing conserved influenza proteins protect mice against lethal challenge with H5N1, H9N2 and H7N1 viruses. PLoS One. 2014; 9(2): e88340.
  6. Dehg L., Ibanes L.I., Van den Bossche V., Roose K., Youssef S.A., de Bruin A. et al. Protection against Influenza A Virus Challenge with M2e-Displaying Filamentous Escherichia coli Phages. PLoS One. 2015; 10(5): e0126650.
  7. WHO. Global Vaccine Action Plan. Available at: http://www.who.int/immunization/global_vaccine_action_plan/en/
  8. Jegerlehner A., Schmitz N., Storni T., Bachmann M.F. Influenza A vaccine based on the extracellular domain of M2: weak protection mediated via antibody-dependent NK cell activity. J. Immunol. 2004; 172(9): 5598-605.
  9. El Bakkouri K., Descamps F., De Fillete M., Smet A., Festjens E., Birkett A. et al. Universal vaccine based on ectodomain of matrix protein 2 of influenza A: Fc receptors and alveolar macrophages mediate protection. J. Immunol. 2011; 186(2): 1022-31.
  10. Andersson A.M., Hakansson K.O., Jensen B.A., Christensen D., Andersen P., Thomsen A. R., et al. Increased immunogenicity and protective efficacy of influenza M2e fused to a tetramerizing protein. PLoS One. 2012; 7(10): e46395.
  11. Kim M.C., Lee Y.N., Ko E.J. Supplementation of influenza split vaccines with conserved M2 ectodomains overcomes strain specificity and provides long-term cross protection. Mol. Ther. 2014; 22(7): 1364-74.
  12. Ravin N.V., Blokhina E.A., Kuprianov V.V., Stepanova L.A., Shaldjan A.A., Kovaleva A.A., et al. Development of a candidate influenza vaccine based on virus-like particles displaying influenza M2e peptide into the immunodominant loop region of hepatitis B core antigen: Insertion of multiple copies of M2e increases immunogenicity and protective efficiency. Vaccine. 2015; 33(29): 3392-7.
  13. Tsybalova L.M., Stepanova L.A., Kuprianov V.V., Blokhina E.A., Potapchuk M.V., Korotkov A.V., et al. Development of a candidate influenza vaccine based on virus-like particles displaying influenza M2e peptide into the immunodominant region of hepatitis B core antigen: Broad protective efficacy of particles carrying four copies of M2e. Vaccine. 2015; 33(29): 3398-406.
  14. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970; 227(5259): 680-5.
  15. Malen H., Berven F.S., Fladmark K.E., Wiker H.G. Comprehensive analysis of exported proteins from Mycobacterium tuberculosis H37Rv. Proteomics. 2007; 7(10): 1702-18.
  16. Stepanova L.A., Kotlyarov R.Y., Kovaleva A.A., Potapchuk M.V., Korotkov A.V., Sergeeva M.V., et al. Protection against multiple influenza A virus strains induced by candidate recombinant vaccine based on heterologous M2e peptides linked to flagellin. PLoS One. 2015; 10(3): e0119520.
  17. Филатов О.Ю., Кашаева О.В., Бугримов Д.Ю., Климович А.А. Морфофизиологические принципы иммунологического действия ДНК эукариот. Российский иммунологический журнал. 2013; 7(4): 385-90.
  18. Бугримов Д.Ю., Лядов Д.В., Красноруцкая О.Н., Климович А.А. Оценка уровня экспрессии TLR-9 рецепторов при введении препарата Деринат. Вестник новых медицинских технологий. 2012; 19(2): 288-9.
  19. De Filette M., Jou W.M., Birkett A., Lyons K., Schultz B., Tonkyro A., et al. Universal influenza A vaccine: optimization of M2-based constructs. Virology. 2005; 337(1): 149-61.
  20. Mozdzanovska K., Zharikova D., Cudic M., Otvos l., Gerhard W. Roles of adjuvantand route of vaccination in antibody response and protection engendered by a synthetic matrix protein 2-based influenza A virus vaccine in the mouse. Virol. J. 2007; 4: 118-29.
  21. Schmiz N., Beerli R., Bauer M., Jegerlehner A., Dietmeier K., Maudrich M., et al. Universal vaccine against influenza virus: linking TLR signaling to anti-viral protection. Eur. J. Immunol. 2012; 42(4): 863-9.
  22. Herzenberg L.A., Tokuhisa T., Park D.R. Epitope-specific regulation. II. A bistable, Igh-restricted regulatory mechanism central to immunologic memory. J. Exp. Med. 1982; 155(6): 1741-53.
  23. Spellberg В. Type 1/Type 2 Immunity in Infectious Diseases. Clin. Infect. Dis. 2000; 32(1): 76-102.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Tsybalova L.M., Stepanova L.A., Shuklina M.A., Petrov S.V., Kovaleva A.A., Potapchuk M.V., Shaldzhan A.A., Zabrodskaya Y.A., Egorov V.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».