DEVELOPMENT OF MAGNETRON PROTECTIVE COATINGS OF CHROMIUM NITRIDES AND CARBIDES ON TITANIUM BIPOLAR PLATES OF A FUEL CELL WITH A PROTON-EXCHANGE MEMBRANE
- Autores: Nefedkina S.I.1, Kachalina G.V.1, Eletskikh V.E.1, Zilova O.S.1, Kasyanenko V.A.1
-
Afiliações:
- MPEI National Research University
- Edição: Volume 61, Nº 8 (2025)
- Páginas: 367-379
- Seção: Специальный выпуск “Электрохимия на ХХII Менделеевском съезде общей и прикладной химии”, октябрь 2024 г., Сириус, РФ
- URL: https://journals.rcsi.science/0424-8570/article/view/352853
- DOI: https://doi.org/10.7868/S3034618525080028
- ID: 352853
Citar
Resumo
Sobre autores
S. Nefedkina
MPEI National Research University
Email: nefedkini@mpei.ru
Moscow, Russia
G. Kachalina
MPEI National Research University
Email: nefedkini@mpei.ru
Moscow, Russia
V. Eletskikh
MPEI National Research University
Email: nefedkini@mpei.ru
Moscow, Russia
O. Zilova
MPEI National Research University
Email: nefedkini@mpei.ru
Moscow, Russia
V. Kasyanenko
MPEI National Research University
Email: nefedkini@mpei.ru
Moscow, Russia
Bibliografia
- Papageorgopoulos, D., 2019 Annual Merit Review and Peer Evaluation Meeting. Fuel Cell R&D Overview. U.S. Department of Energy. Fuel Cell Technologies Office, 2019. https://www.hydrogen.energy.gov. Accessed January 14, 2020.
- Thompson, S.T., Brian, D.J., Huya-Kouadio, J.M., et al., Direct hydrogen fuel cell electric vehicle cost analysis: System and high-volume manufacturing description, validation, and outlook, J. Power Sources, 2018, vol. 399, p. 304. https://doi.org/10.1016/j.jpowsour.2018.07.100
- Zhang, C., Ma, J., Liang, X., et al., Fabrication of metallic bipolar plate for proton exchange membrane fuel cells by using polymer powder medium based flexible forming, J. Mater. Process, 2018, vol. 262, p. 32. https://doi.org/10.1016/j.jmatprotec.2018.06.014
- Elyasi, M., Khatir, F.A., and Hosseinzadeh, M., Manufacturing metallic bipolar plate fuel cells through rubber pad forming process, Int. J. Adv. Manuf. Technol., 2016, vol. 89 (9–12), p. 3257. https://doi.org/10.1007/s00170-016-9297-6
- Jin, J., Zhang, J., Hu, M., and Li, X., Investigation of high potential corrosion protection with titanium carbonitride coating on 316L stainless steel bipolar plates, Corrosion Sci., 2021, vol. 191, 109757. https://doi.org/10.1016/j.corsci.2021.109757
- Wang, H. and Turner, J.A., Reviewing metallic PEMFC bipolar plates, Fuel Cell, 2010, vol. 10, p. 510. https://doi.org/10.1002/fuce.200900187
- Jeong, K.I., Oh, J., Song, S.A., et al., A review of composite bipolar plates in proton exchange membrane fuel cells: electrical properties and gas permeability, Compos. Struct., 2021, vol. 262, p. 113617. https://doi.org/10.1016/j.compstruct.2021.113617
- Liu, R., Jia, Q., Zhang, B., et al., Protective coatings for metal bipolar plates of fuel cells: a review, Int. J. Hydrogen Energy, 2022, vol. 47, p. 22915. https://doi.org/10.1016/j.ijhydene.2022.05.078
- Jiao, K., Xuan, J., Du, Q., et al., Designing the next generation of proton-exchange membrane fuel cells, Nature, 2021, vol. 595, p. 361. https://doi.org/10.1038/s41586-021-03482-7
- Нефедкин, С.И., Гутерман, В.Е., Алексеенко, А.А. и др. Российские технологии и наноструктурные материалы в системах с высокой удельной мощностью на основе водородно-воздушных топливных элементов с открытым катодом. Нанотехнологии в России. 2020. Т. 15. С. 370. [Nefedkin, S.I., Guterman, V.E., Alekseenko, A.A., et al., Russian Technologies and Nanostructural Materials in High Specific Power Systems Based on Hydrogen–Air Fuel Cells with an Open Cathode, Nanotechnol. Russia, 2020, vol. 15, p. 370.] https://doi.org/10.1134/S199507802003009X
- Nefedkin, S.I., Klimova, M.A., Glasov, V.S., et al., Effect of the corrugated bipolar plate design on the self-humidification of a high-power density PEMFC stack for UAVs, Fuel Cells, 2021, vol. 21, p. 1. https://doi.org/10.1002/fuce.202000163
- Wu, S., Yang, W., Yan, H., et al., A review of modified metal bipolar plates for proton exchange membrane fuel cells, Int. J. Hydrogen Energy, 2021, vol. 46, p. 8672. https://doi.org/10.1016/j.ijhydene.2020.12.074
- DOE Technical Targets for Polymer Electrolyte Membrane Fuel Cell Components. https://www.energy.gov/eere/fuelcells/doe-technical-targets-polymer-electrolyte-membrane-fuel-cell-components. Accessed January 14, 2020.
- Jeong, K.I., Oh, J., Song, S.A., et al., A review of composite bipolar plates in proton exchange membrane fuel cells: electrical properties and gas permeability, Compos. Struct., 2021, vol. 262, p. 113617. https://doi.org/10.1016/j.compstruct.2021.113617
- Zhang, D., Du, L., Guo, L., et al., TiN coated titanium as the bipolar plate for PEMFC by multi-arc ion plating, Int. J. Hydrogen Energy, 2011, vol. 36 (15), p. 9155.
- Duan, L., Zhang, D., Guo, L., and Wang, Z., Corrosion behavior of TiN-coated titanium as bipolar plates for PEMFC by multi-arc ion plating, J. Nonferrous Metals, 2011, vol. 21 (1), p. 159.
- Liu, W., Jiao, D., Ding, H., et al., Corrosion resistance of CrN film deposited by high-power impulse magnetron sputtering on SS304 in a simulated environment for proton exchange membrane fuel cells, Int. J. Hydrogen Energy, 2023, vol. 48 (66), p. 25901. https://doi.org/10.1016/j.ijhydene.2023.03.265
- Li, S., Jin, R., Li, S., et al., High corrosion resistance and conductivity of Al2O3/CrN coating for metal bipolar plates in PEMFCs: Al2O3 hinders CrN columnar crystals growth, Int. J. Hydrogen Energy, 2024, vol. 50, p. 805.
- Zhou, H., Jiao, D., Ding, H., et al., Effect of magnetron sputtering C-doped CrN film on the conductivity and corrosion resistance of 304 stainless steel bipolar plates, Surf. Coat. Technol., 2024, vol. 483, 130769. https://doi.org/10.1016/j.surfcoat.2024.130769
- Kachalin, G.V., Mednikov, A.F., Tkhabisimov, A.B., and Sidorov, S.V., Study of the wear resistance of ion-plasma coatings based on titanium and aluminum and obtained by magnetron sputtering, J. Phys. Conf. Ser., 2017, vol. 857, p. 012016. https://doi.org/10.1088/1742-6596/857/1/012016
- Нефедкин, C.И. Рябухин, А.В., Елецких, В.Е., Болдин, Р.Г., Михневич В.Д., Климова М.А. Магнетронная технология изготовления электродов электролизеров с протонообменной мембраной. Электрохимия. 2024. Т. 60. С. 221. [Nefedkin, S.I., Ryabukhin, A.V., Eletskikh, V.E., Boldin, R.G., Mikhnevich, V.D., and Klimova, M.A., Magnetron Technology for Manufacturing of Electrodes for Electrolyzers with Proton-Exchange Membranes, Russ. J. Electrochem., 2024, vol. 60, p. 200.] https://doi.org/10.1134/S1023193524030091
- Григорьев, И.С., Мейлихов, Е.З. Физические величины: Справочник.: М.: Энергоатомиздат, 1991, 1232 с. [Grigoriev, I.S. and Meilikhov, E.Z., Physical quantities, Moscow: Energoatomizdat, 1991. 1232 p.]. ISBN: 5-283-04013-5.
Arquivos suplementares

