ELECTROCHEMICAL PARAMETERS OF MICROBIAL FUEL CELLS BASED ON THE MICROCOCCUS LUTEUS STRAIN, NEW ION-EXCHANGE MEMBRANES AND VARIOUS SUGARS

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We studied the physicochemical and electrochemical characteristics of microbial fuel cells (MFCs) with a new proton-exchange membrane. It was synthesized on the basis of zeolite-doped polyvinyl alcohol cross-linked with sulfosuccinic acid (PVA-SSA-BEA). An MF-4SK industrial membrane (Plastpolymer, Russia) was used as a comparative sample. Various sugars were added as substrates (glucose, arabinose, galactose, xylose). The role of the bioagent was performed by the strain Micrococcus luteus 1-i. MFCs with PVA-SSA-BEA and MF-4SK membranes showed rather close electrochemical characteristics. A higher electricity output was performed with the addition of glucose, galactose, the lowest - with the use of xylose. The data obtained indicate that the proposed PVA-SSA-BEA membrane is promising for use as an alternative to proton-exchange membranes widely used in fuel cell technology.

Sobre autores

A. Chesnokova

Irkutsk National Research Technical University

Email: chesnokova@istu.edu
Irkutsk, Russia

S. Zakarchevsky

Irkutsk National Research Technical University

Email: stomd@mail.ru
Irkutsk, Russia

G. Zhdanova

Irkutsk State University

Email: stomd@mail.ru
Irkutsk, Russia

D. Stom

Irkutsk National Research Technical University; Irkutsk State University; Baikal Museum of the SB RAS

Autor responsável pela correspondência
Email: stomd@mail.ru
Irkutsk, Russia; Irkutsk, Russia; Listvyanka Irkutsk region, Russia

Bibliografia

  1. Ramya, M. and Kumar, P.S., A review on recent advancements in bioenergy production using microbial fuel cells, Chemosphere, 2022, vol. 288, part 2, 132512. https://doi.org/10.1016/j.chemosphere.2021.132512
  2. Wilberforce, T., Abdelkareem, M.A., Elsaid, K., Olabi, A.G., and Sayed, E.T., Role of carbon-based nanomaterials in improving the performance of microbial fuel cells, Energy, 2022, vol. 240, 122478. https://doi.org/10.1016/j.energy.2021.122478
  3. Boas, J.V., Oliveira, V.B., Simões, M., and Pinto, A.M.F.R., Review on microbial fuel cells applications, developments and costs, J. Environmental Management, 2022, vol. 307, 114525. https://doi.org/10.1016/j.jenvman.2022.114525
  4. Mohyudin, S., Farooq, R., Jubeen, F., Rasheed, T., Fatima, M., and Sher, F., Microbial fuel cells a state-of-the-art technology for wastewater treatment and bioelectricity generation, Environmental Res., 2022, vol. 204, part D, 112387. https://doi.org/10.1016/j.envres.2021.112387
  5. Liu, L., Zhou, X., Wang, Y., Li, S., Yin, R., Ji, X., Zhao, X., and Li, B., Study of high active and redox-stable La0.9Ca0.1Fe0.9Nb0.1O3-δ/Sm0.1Ce0.9O2−δ composite ceramic electrode for solid oxide reversible cells, Electrochim. Acta, 2017, vol. 236, p. 371. https://doi.org/10.1016/j.electacta.2017.03.195
  6. Moon, J.M., Kondaveeti, S., and Min, B., Evaluation of low-cost separators for increased power generation in single chamber microbial fuel cells with membrane electrode assembly, Fuel Cells, 2015, vol. 15, no. 1, p. 230. https://doi.org/10.1002/fuce.201400036
  7. Hendrana, S., Chaldun, E.R., Pudjiastuti, S., Rahayu, I., Natanael, C.L., Oktaverina, D., and Semboor, M.S., Heterogeneous sulphonation of polystyrene for polymer electrolyte membrane fuel cell application, Macromolec. Symp., 2013, vol. 327, vol. 1, p. 80. https://doi.org/10.1002/masy.201350509
  8. Bai, Z., Durstock, M.F., and Dang, T.D., Proton conductivity and properties of sulfonated polyarylenethioether sulfones as proton exchange membranes in fuel cells, J. Membr. Sci., 2006, vol. 281, no. 1–2, p. 508. https://doi.org/10.1016/j.memsci.2006.04.021
  9. Umar, M.F., Rafatullah, M., Abbas, S.Z., Mohamad, I.M.N., and Ismail, N., Advancement in Benthic Microbial Fuel Cells toward Sustainable Bioremediation and Renewable Energy Production, Internat. J. Environmental Res. and Publ. Health, 2021, vol. 18(7), 3811. https://doi.org/10.3390/ijerph18073811
  10. Wang, H., Chen, P., Zhang, Sh., Jiang, J., Hua, T., and Li, F., Degradation of pyrene using single-chamber air-cathode microbial fuel cells: Electrochemical parameters and bacterial community changes, Sci. Total Environment, 2022, vol. 804, 150153. https://doi.org/10.1016/j.scitotenv.2021.150153
  11. Dai, Q., Zhang, S., Liu, H., Huang, J., and Li, L., Sulfide-mediated azo dye degradation and microbial community analysis in a single-chamber air cathode microbial fuel cell, Bioelectrochem., 2020, vol. 131, 107349. https://doi.org/10.1016/j.bioelechem.2019.107349
  12. Chesnokova, A.N., Zhamsaranzhapova, T.D., Zakarchevskiy, S.A., Kulshrestha, V., Skornikova, S.A., Makarov, S.S., and Pozhidaev, Yu.N., Effect of zeolite content on proton conductivity and technical characteristics of the membranes based on crosslinked polyvinyl alcohol, Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhnologiya = Proceedings of Universities. Appl. Chem. and Biotechnol., 2020, vol. 10, no. 2, p. 360. (In Russian) https://doi.org/10.21285/2227-2925-2020-10-2-360-367
  13. Stom, D.I., Konovalova, E.Yu., Zhdanova, G.O., Tolstoy, M.Yu., and Vyatchina, O.F., Active sludge and strains isolated from it as bioagents in biofuel cells / 17th Internat. Multidisciplinary Scientific Geoconference SGEM 2017, Conf. proc., 2017, vol. 17, Issue 42, p. 19. https://doi.org/10.5593/sgem2017/42/S17.003
  14. Kuznetsov, A.V., Khorina, N.N., Konovalova, E.Yu., Amsheev, D.Yu., Ponamoreva, O.N., and Stom, D.I., Bioelectrochemical processes of oxidation of dicarboxylic amino acids by strain Micrococcus luteus 1-I in a biofuel cell, IOP Conf. Ser.: Earth and Environmental Sci., 2021, vol. 808, 012038. https://doi.org/10.1088/1755-1315/808/1/012038
  15. Lebedeva, O.V., Pozhidaev, Yu.N., Malakhova, E.A., Raskulova, T.V., Chesnokova, A.N., Kulshrestha, V., et al., Sodium p-styrene sulfonate-1-vinylimidazole copolymers for acid-base proton-exchange membranes, Membr. and Membr. Technol., 2020, vol. 2, p. 76. https://doi.org/10.1134/S2517751620020079
  16. Volkov, V.I., Pavlov, A.A., and Sanginov, E.A., Ionic transport mechanism in cation-exchange membranes studied by NMR technique, Solid State Ionics, 2011, vol. 188(1), p. 124.
  17. Stenina, I.A. and Yaroslavtsev, A.B., Ionic Mobility in Ion-Exchange Membranes, Membranes, 2021, vol. 11, 198. https://doi.org/10.3390/membranes11030198
  18. Yaroslavtsev, A.B., Solid electrolytes: Main prospects of research and development, Russ. Chem. Rev., 2016, vol. 85, p. 1255. https://doi.org/10.1070/RCR4634
  19. Peng, J., Tian, M., Cantillo, N.M., and Zawodzinski, T., The ion and water transport properties of K+ and Na+ form perfluorosulfonic acid polymer, Electrochim. Acta, 2018, vol. 282, p. 544. https://doi.org/10.1016/j.electacta.2018.06.035
  20. Shi, S., Weber, A.Z., and Kusoglu, A., Structure-transport relationship of perfluorosulfonic-acid membranes in different cationic forms, Electrochim. Acta, 2016, vol. 220, p. 517. https://doi.org/10.1016/j.electacta.2016.10.096
  21. Okada, T., Xie, G., Gorseth, O., Kjelstrup, S., Nakamura, N., and Arimura, T., Ion and water transport characteristics of Nafion membranes as electrolytes, Electrochim. Acta, 1998, vol. 43, p. 3741. https://doi.org/10.1016/S0013-4686(98)00132-7
  22. Heyrovska, R., Dependence of ion-water distances on covalent radii, ionic radii in water and distances of oxygen and hydrogen of water from ion/water boundaries, Chem. Phys. Lett., 2006, 429, p. 600.
  23. Konovalova, E.Yu., Barbora, L., Chizhik, K.I., and Stom, D.I., Micrococcus luteus and Serratia marcescens, as a new association of bio-agents for microbial fuel cells, IOP Conf. Ser.: Earth and Environmental Sci., 2020, vol. 408, 012080. https://doi.org/10.1088/1755-1315/408/1/012080
  24. Choi, Y., Jung, E., Park, H., Jung, S., and Kim S., Effect of Initial Carbon Sources on the Performance of a Microbial Fuel Cell Containing Environmental Microorganism Micrococcus luteus, Korean Chem. Soc., 2007, vol. 28, no. 9, p. 1591.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (922KB)
3.

Baixar (75KB)
4.

Baixar (76KB)
5.

Baixar (156KB)
6.

Baixar (68KB)
7.

Baixar (68KB)
8.

Baixar (163KB)
9.

Baixar (50KB)

Declaração de direitos autorais © А.Н. Чеснокова, С.А. Закарчевский, Г.О. Жданова, Д.И. Стом, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies