СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА ПОКРЫТИЙ, ЭЛЕКТРОПОЛИМЕРИЗОВАННЫХ ИЗ ВОДНЫХ СРЕД И ГЛУБОКИХ ЭВТЕКТИЧЕСКИХ РАСТВОРИТЕЛЕЙ, И ИХ ПРИМЕНЕНИЕ В СОСТАВЕ ПОТЕНЦИОМЕТРИЧЕСКИХ СЕНСОРОВ
- Авторы: Галимзянова Г.И1, Сорвин М.И1, Шамагсумова Р.В1, Краснова Т.Н1, Порфирьева А.В1, Евтюгин Г.А1
-
Учреждения:
- Казанский (Приволжский) федеральный университет, Химический институт им. А. М. Бутлерова
- Выпуск: Том 61, № 9 (2025)
- Страницы: 450–469
- Раздел: Специальный выпуск “Электрохимия на ХХII Менделеевском съезде общей и прикладной химии”, октябрь 2024 г., Сириус, РФ
- URL: https://journals.rcsi.science/0424-8570/article/view/376645
- DOI: https://doi.org/10.7868/S3034618525090034
- ID: 376645
Цитировать
Аннотация
Проведено сравнение потенциометрических характеристик электрополимеризованных покрытий, полученных из сред фосфатного и ГЕПЕС-буферного растворов, а также глубоких эвтектических растворителей – релина и смеси лимонной кислоты, глюкозы и воды. Для всех полученных покрытий было изучено влияние кислотности среды на потенциал сенсора и проведена оценка обратимости потенциометрического отклика. На основе синтезированных покрытий был разработан ряд твердоконтактных потенциометрических сенсоров для определения легкоокисляющихся органических соединений – гидрохинона, дофамина, кверцетина и аскорбиновой кислоты. Установлены аналитические характеристики определения указанных легкоокисляющихся органических соединений. Показано, что в зависимости от кислотности среды аналиты могут проявлять себя как однозарядные анионы, демонстрируя наклоны, близкие к нернстовским, или как восстановители, которые влияют на соотношение окисленной и восстановленной форм полимеров в составе модифицирующего слоя. Покрытия, синтезированные из сред глубоких эвтектических растворителей, демонстрировали более широкий диапазон определяемых концентраций и большую чувствительность по сравнению с покрытиями, электроосажденными из водных сред. Разработанные твердоконтактные потенциометрические сенсоры были апробированы для определения аналитов в составе косметических средств, лекарственных препаратов и биологически активных добавок. Степень открытия составила от 92 до 107%.
Об авторах
Г. И Галимзянова
Казанский (Приволжский) федеральный университет, Химический институт им. А. М. Бутлерова
Email: Anna.Porfireva@kpfu.ru
Казань, Россия
М. И Сорвин
Казанский (Приволжский) федеральный университет, Химический институт им. А. М. Бутлерова
Email: Anna.Porfireva@kpfu.ru
Казань, Россия
Р. В Шамагсумова
Казанский (Приволжский) федеральный университет, Химический институт им. А. М. Бутлерова
Email: Anna.Porfireva@kpfu.ru
Казань, Россия
Т. Н Краснова
Казанский (Приволжский) федеральный университет, Химический институт им. А. М. Бутлерова
Email: Anna.Porfireva@kpfu.ru
Казань, Россия
А. В Порфирьева
Казанский (Приволжский) федеральный университет, Химический институт им. А. М. Бутлерова
Email: Anna.Porfireva@kpfu.ru
Казань, Россия
Г. А Евтюгин
Казанский (Приволжский) федеральный университет, Химический институт им. А. М. Бутлерова
Автор, ответственный за переписку.
Email: Anna.Porfireva@kpfu.ru
Казань, Россия
Список литературы
- Abdallah, N.A., Carbon nanotube electrodes in comparison to coated platinum wire and carbon paste selective electrodes for the determination of tramadol hydrochloride in bulk, pharmaceutical formulations, and spiked human plasma and urine, Sens. Mater., 2016, vol. 28, p. 797.
- Fahem, D.K., El Houssini, O.M., Abd El-Rahman, M.K., and Zaazaa, H.E., A point of care screen printed potentiometric sensor for therapeutic monitoring of vecuronium, Microchem. J., 2019, vol. 147, p. 532.
- Borg, H., Belal, F., and Draz, M.E., Facile fabrication of a portable PANI-NFs/c-MWCNT nano-composite electrochemical sensor for gefitinib: application to human plasma, Anal. Methods, 2022, vol.14, p. 4721.
- Abdelaal, S.H., El Azab, N.F., Hassan, S.A., and El-Kosasy, A.M., Monitoring of the prohibited 2-phenethylamine in dietary supplements using a t-Butyl calix[8]arene/Ag/CuO composite-based potentiometric sensor, Microchem. J., 2024, vol. 201, Art. 110695.
- Heragy, M.O., Moustafa, A.A.M., Elzanfaly, E.S., and Saad, A.S., A portable solid-state potentiometric sensor based on a polymeric ion-exchanger for the assay of a controversial food colorant (sunset yellow), Anal. Methods, 2021, vol. 13, p. 4896.
- Broncová, G., Shishkanova, T.V., and Matějka, P., The novel three-layer electrode based on poly(Neutral red) for potentiometric determination of citrates, Chemosensors, 2023, vol. 11, Art. 170.
- Tonelli, D., Ballarin, B., Guadagnini, L., Mignani, A., and Scavetta, E., A novel potentiometric sensor for l-ascorbic acid based on molecularly imprinted polypyrrole, Electrochim. Acta, 2011, vol. 56, p. 7149.
- Kim, Y., Seo, M., and Baek, S., Ion-selective electrode-based sensors from the macro- to the nanoscale, Sens. Actuators Rep., 2025, vol. 9, Art. 100258.
- El Rhazi, M., Majid, S., Elbasri, M., Salih, F.E., Oularbi, L., and Lafdi, K., Recent progress in nanocomposites based on conducting polymer: application as electrochemical sensors, Int. Nano Lett., 2018, vol. 8, p. 79.
- Oña, J.P., Mousavi, Z., Sokalski, T., Leito, I., and Bobacka, J., Dependence of the potentiometric response of PEDOT(PSS) on the solubility product of silver salts, Electrochim. Acta, 2021, vol. 390, Art. 138854.
- Zuaznabar-Gardona, J.C. and Fragoso, A., A wide-range solid state potentiometric pH sensor based on poly-dopamine coated carbon nano-onion electrodes, Sens. Actuators, B, 2018, vol. 273, p. 664.
- Kaur, G., Adhikari, R., Cass, P., Bowna, M., and Gunatillak, P., Electrically conductive polymers and composites for biomedical applications, RSC Adv., 2015, vol. 5, p. 37553.
- Kaur, G., Adhikari, R., Cass, P., Bowna, M., and Gunatillak, P., Electrically conductive polymers and composites for biomedical applications, RSC Adv., 2015, vol. 5, p. 37553.
- Namsheer, K. and Rout, C.S., Conducting polymers: A comprehensive review on recent advances in synthesis, properties and applications, RSC Adv., 2021, vol. 11, p. 5659.
- Kuznetsova, L.S., Arlyapov, V.A., Plekhanova, Y.V., Tarasov, S.E., Kharkova, A.S., Saverina, E.A., and Reshetilov, A.N., Conductive polymers and their nanocomposites: application features in biosensors and biofuel cells, Polymers, 2023, vol. 15, Art. 3783.
- Dalkiran, B. and Brett, C.M.A., Polyphenazine and polytriphenylmethane redox polymer/nanomaterial–based electrochemical sensors and biosensors: a review, Microchim. Acta, 2021, vol. 188, Art. 178.
- Muratova, I.S., Kartsova, L.A., and Mikhelson, K.N., Voltammetric vs. potentiometric sensing of dopamine: Advantages and disadvantages, novel cell designs, fundamental limitations and promising options, Sens. Actuators, B, 2015, vol. 207, p. 900.
- Khalifa, M.E., Ali, T.A., and Abdallah, A.B., Molecularly imprinted polymer based GCE for ultra-sensitive voltammetric and potentiometric bio sensing of topiramate, Anal. Sci., 2021, vol. 37, p. 955.
- Satake, H. and Sakata, T., Electropolymerized poly(-toluidine blue O) film electrode for potentiometric biosensing, Sens. Mater., 2018, vol. 30, p. 2333.
- Broncová, G., Prokopec, V., and Shishkanova, T.V., Potentiometric electronic tongue for pharmaceutical analytics: determination of ascorbic acid based on electropolymerized films, Chemosensors, 2021, vol. 9, Art. 110.
- Sanjeeta, A.S. and Kavirajwar, J., Dynamic properties and diverse applications of deep eutectic solvents, J. Ionic Liquids, 2025, vol. 5, Art. 100135.
- Brett, C.M.A., Perspectives for the use of deep eutectic solvents in the preparation of electrochemical sensors and biosensors, Curr. Opin. Electrochem., 2024, vol. 45, Art. 101465.
- Qin, H., Hu, X., Wang, J., Cheng, H., Chen, L., and Qi, Z., Overview of acidic deep eutectic solvents on synthesis, properties and applications, GEE, 2020, vol. 5, p. 8.
- Porfireva, A., Begisheva, E., Evtugyn, V., and Evtugyn, G., Electrochemical DNA sensor for valrubicin detection based on poly(Azure C) films deposited from deep eutectic solvent, Biosensors, 2023, vol. 13, Art. 931.
- Goida, A., Rogov, A., Kuzin, Y., Porfireva, A., and Evtugyn, G., Impedimetric DNA sensors for epirubicin detection based on polythionine films electropolymerized from deep eutectic solvent, Sensors, 2023, vol. 23, Art. 8242.
- Porfireva, A., Goida, A., Evtugyn, V., Mozgovaya, M., Krasnova, T., and Evtugyn, G., Electrochemical DNA sensor based on poly(proflavine) deposited from natural deep eutectic solvents for DNA damage detection and antioxidant influence assessment, Chemosensors, 2024, vol. 12, Art. 215.
- Pauliukaite, R. and Brett, C.M.A., Poly(neutral red): electrosynthesis, characterization, and application as a redox mediator, Electroanalysis, 2008, vol. 20, p. 1275.
- Olean-Oliveira, A., Brito, G.A.O., Cardoso, C.X., and Teixeira, M.F.S., Role of anion size in the electrochemical performance of a poly(thionine) redox conductive polymer using electrochemical impedance spectroscopy, Polymer, 2022, vol. 258, Art. 125291.
- Pauliukaite, R., Ghica, M.E., Barsan, M., and Brett, C.M.A., Characterisation of poly(neutral red) modified carbon film electrodes; application as a redox mediator for biosensors, J. Solid State Electrochem., 2007, vol. 11, p. 899.
- Chen, C. and Gao, Y., Electrosynthesis of poly(neutral red), a polyaniline derivative, Electrochim. Acta, 2007, vol. 52, p. 3143.
- Sun, W., Jiao, K., Han, J., and Lu, L., Linear sweep voltammetric determination of heparin based on its interaction with Neutral red, Anal. Lett., 2005, vol. 38, p. 1137.
- Broncová, G., Shishkanova, T.V., Matĕjka, P., Volf, R., and Král, V., Citrate selectivity of poly(neutral red) electropolymerized films, Anal. Chim. Acta, 2004, vol. 511, p. 197.
- Lakard, B., Segut, O., Lakard, S., Herlem, G., and Gharbi, T., Potentiometric miniaturized pH sensors based on polypyrrole films, Sens. Actuators, B, 2007, vol. 122, p. 101.
- Mo, X., Wang, J., Wang, Z., and Wang, S., Potentiometric pH responses of fibrillar polypyrrole modified electrodes, Sens. Actuators, B, 2003, vol. 96, p. 533.
- Stoikova, E.E., Sorvin, M.I., Shurpik, D.N., Budnikov, H.C., Stoikov, I.I., and Evtugyn, G.A., Solid-contact potentiometric sensor based on polyaniline and unsubstituted pillar[5]arene, Electroanalysis, 2015, vol. 27, p. 440.
- Flores, J.M., Maningas, M.B.B., and Sevilla III, F.B., Micro-probe potentiometric pH sensor for detection of amplification in the LAMP assay for white spot syndrome virus (WSSV) in shrimps, IEEE Sens. J., 2022, vol. 22, p. 9289.
- Зенкевич, И.Г., Гущина, С.В. О причинах и устранении невоспроизводимости констант диссоциации кверцетина. Успехи cовременного естествознания. 2009. Т. 9. С. 10. [Zenkevich, I.G. and Guschina, S.V., The reasons and the removal of quercetin dissociation constants non-reproducibility, Uspehi sovremennogo yestestvoznaniya (in Russian), 2009, no. 9, p. 10.]
- Лебедев, А.В., Иванова, М.В., Тимошин, А.А., Рууге, Э.К. Действие катионов кальция на кислотно-основные свойства и свободнорадикальное окисление дофамина и пирокатехина. Биомедицинская химия. 2008. Т. 54. С. 687. @@ Lebedev, A.V., Ivanova, M.V., Timoshin, A.A, and Ruuge, E.K., The effect of calcium cations on acid-base properties and free-radical oxidation of dopamine and pyrocatechol, Biomedical Chemistry: Research and Methods, 2008, vol. 54, p. 687.
- Al-Meshal, I.A. and Hassan, M.M.A., Ascorbic acid, in Analytical profiles of drug substances, Florey, K., Ed, New York: Academic Press, Inc., 1982, p. 45–78.
- Решетникова, И.С., Романевич, А.С., Штыков, С.Н. Спектрофотометрическое изучение устойчивости растворов кверцетина и рутина при различной кислотности среды. Изв. Сарат. ун-та. Нов. Сер. Сер. Химия. Биология. Экология. 2018. Т. 18. С. 256. @@Reshetnikova, I.S., Romanevich, A.S., and Shtykov, S.N., Spectrophotometric investigation of quercetin and rutin solutions stability at different media acidity, Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2018, vol. 18, p. 256.
- Evtugyn, G.A., Belyakova, S.V., Shamagsumova, R.V., Saveliev, A.A., Ivanov, A.N., Stoikova, E.E., Dolgova, N.N., Stoikov, I.I., Antipin, I.S., and Budnikov, H.C., Discrimination of apple juice and herbal liqueur brands with solid-state electrodes covered with polyaniline and thiacalixarenes, Talanta, 2010, vol. 82, p. 613.
- Khadieva, A.I., Gorbachuk, V.V., Evtugyn, G.A., Belyakova, S.V., Latypov, R.R., Drobyshev, S.V., and Stoikov I.I., Phenyliminophenothiazine based self-organization of polyaniline nanowires and application as redox probe in electrochemical sensors, Sci. Rep., 2019, vol. 9, Art. 417.
- Kamel, A.H., A.E.-G.E. Amr, Ashmawy, N.H., Galal, H.R., Al-Omar, M.A., and Sayed, A.Y.A., Solid-contact potentiometric sensors based on stimulus-responsive imprinted polymers for reversible detection of neutral dopamine, Polymers, 2020, vol. 12, Art. 1406.
- Kajisa, T., Li, W., Michinobu, T., and Sakata, T., Well-designed dopamine-imprinted polymer interface for selective and quantitative dopamine detection among catecholamines using a potentiometric biosensor, Biosens. Bioelectron., 2018, vol. 117, p. 810.
- Evtugyn, G., Shamagsumova, R., Younusova, L., Sitdikov, R., Stoikov, I.I., Antipin, I.S., and Budnikov, H.C., Solid-contact potentiometric sensor based on polyaniline-silver composite for the detection of dopamine, Chem. Sens., 2014, vol. 4, p. 1.
- B, G. and Deepa, P.N., Nanoarchitectonics of a new rGO/poly(p-aminobenzoic acid) (pPABA)-based molecularly imprinted polymer electrode for detecting ascorbic acid, uric acid and glucose, J. Solid State Electrochem., 2024, vol. 28, p. 357.
Дополнительные файлы


