PRODUCTION OF PLATINUM CATALYSTS VIA PLASMA-ASSISTED ELECTROCHEMICAL DISPERSION OF METALS AND THEIR CATALYTIC ACTIVITY TOWARDS OXYGEN REDUCTION REACTION

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A comparative study of the catalytic activity of composites based on few-layer graphene structures decorated with Pt nanoparticles obtained as a result of low-voltage and plasma-assisted electrochemical dispersion of platinum electrodes towards oxygen reduction reaction was carried out. The prospects of oxygen reduction reaction electrocatalyst synthesis via electrochemical sputtering of platinum under the action of anodic-cathodic electrolytic plasma were shown.

About the authors

R. A Manzhos

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences

Email: rmanzhos@yandex.ru
Chernogolovka, Russia

N. S Komarova

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences

Email: rmanzhos@yandex.ru
Chernogolovka, Russia

A. V Pugacheva

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences

Email: rmanzhos@yandex.ru
Chernogolovka, Russia

A. S Kotkin

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences

Email: rmanzhos@yandex.ru
Chernogolovka, Russia

I. I Khodos

Institute of Microelectronics Technology and High Purity Materials of Russian Academy of Sciences

Email: rmanzhos@yandex.ru
Chernogolovka, Russia

Ya. I Korepanov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences; Institute of Experimental Mineralogy of Russian Academy of Sciences

Email: rmanzhos@yandex.ru
Chernogolovka, Russia; Chernogolovka, Russia

A. G Krivenko

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences

Author for correspondence.
Email: rmanzhos@yandex.ru
Chernogolovka, Russia

References

  1. Haber, F., The phenomenon of the formation of metallic dust from cathodes, Trans. Am. Electrochem. Soc., 1902, vol. 2, p. 189.
  2. Kabanov, B.N., Incorporation of alkali metals into solid cathodes, Electrochim. Acta, 1968, vol. 13, p. 19.
  3. Kuriganova, A.B., Leontyev, I.N., Maslova, O.A., and Smirnova, N.V., Electrochemically synthesized Pt-based catalysts with different carbon supports for proton exchange membrane fuel cell applications, Mendeleev Commun., 2018, vol. 28, p. 444.
  4. Смирнова, Н.В., Куриганова, А.Б., Леонтьева, Д.В., Леонтьев, И.Н., Михейкин, А.С. Структурные и электрокаталитические свойства катализаторов Pt/C и Pt–Ni/C, полученных методом электрохимического диспергирования. Кинетика и катализ. 2013. Т. 54. С. 265. @@ Smirnova, N.V., Kuriganova, A.B., Leont’eva, D.V., Leont’ev, I.N., and Mikheikin, A.S., Structural and electrocatalytic properties of Pt/C and Pt–Ni/C catalysts prepared by electrochemical dispersion, Kinet. Catal., 2013, vol. 54, p. 255.
  5. Faddeev, N.A., Kuriganova, A.B., Leontyev, I.N., and Smirnova, N.V., Investigation of the carbon monoxide resistance of platinum catalysts prepared via pulse alternating current technique, Mendeleev Commun., 2024, vol. 34, p. 442.
  6. Yanson, A.I., Rodriguez, P., Garcia-Araez, N., Mom, R.V., Tichelaar, F.D., and Koper, M.T.M., Cathodic corrosion: A quick, clean, and versatile method for the synthesis of metallic nanoparticles, Angew. Chem., Int. Ed., 2011, vol. 50, p. 6346.
  7. Feng, J., Chen, D., Sediq, A.S., Romeijn, S., Tichelaar, F.D., Jiskoot, W., Yang, J., and Koper, M.T.M., Cathodic corrosion of a bulk wire to nonaggregated functional nanocrystals and nanoalloys, ACS Appl. Mater. Interfaces, 2018, vol. 10, p. 9532.
  8. Huang, W., Chen, S., Zheng, J., and Li, Z., Facile preparation of Pt hydrosols by dispersing bulk Pt with potential perturbations, Electrochem. Commun., 2009, vol. 11, p. 469.
  9. Chen, X., Chen, S., Huang, W., Zheng, J., and Li, Z., Facile preparation of Bi nanoparticles by novel cathodic dispersion of bulk bismuth electrodes, Electrochim. Acta, 2009, vol. 54, p. 7370.
  10. Fichtner, J., Garlyyev, B., Watzele, S., El-Sayed, H.A., Schwämmlein, J.N., Li, W., Maillard, F., Dubau, L., Michalička, J., Macak, J., Holleitner, A., and Bandarenka, A.S., Top-down synthesis of nanostructured platinum-lanthanide alloy oxygen reduction reaction catalysts: PtxPr/C as an example, ACS Appl. Mater. Interfaces, 2019, vol. 11, p. 5129.
  11. Fichtner, J., Watzele, S., Garlyyev, B., Kluge, R.M., Haimerl, F., El-Sayed, H.A., Li, W.-J., Maillard, F.M., Dubau, L., Chattot, R., Michalička, J., Macak, J.M., Wang, W., Wang, D., Gigl, T., Hugenschmidt, C., and Bandarenka, A.S., Tailoring the oxygen reduction activity of pt nanoparticles through surface defects: a simple top-down approach, ACS Catal., 2020, vol. 10, p. 3131.
  12. Garlyyev, B., Watzele, S., Fichtner, J., Michalička, J., Schökel, A., Senyshyn, A., Perego, A., Pan, D., El-Sayed, H.A., Macak, J.M., Atanassov, P., Zenyuk, I.V., and Bandarenka, A.S., Electrochemical top-down synthesis of C-supported Pt nano-particles with controllable shape and size: Mechanistic insights and application, Nano Res., 2021, vol. 14, p. 2762.
  13. Lv, H., Li, D., Strmcnik, D., Paulikas, A.P., Markovic, N.M., and Stamenkovic, V.R., Recent advances in the design of tailored nanomaterials for efficient oxygen reduction reaction, Nano Energy, 2016, vol. 29, p. 149.
  14. Novikova, K., Kuriganova, A., Leontyev, I., Gerasimova, E., Maslova, O., Rakhmatullin, A., Smirnova, N., and Dobrovolsky, Y., Electrocatalysis, 2018, vol. 9, p. 22.
  15. Krivenko, A.G., Manzhos, R.A., Kotkin, A.S., Kochergin, V.K., Piven, N.P., and Manzhos, A.P., Production of few-layer graphene structures in different modes of electrochemical exfoliation of graphite by voltage pulses, Instrum. Sci. Technol., 2019, vol. 47, p. 535.
  16. Belkin, P.N., Yerokhin, A., and Kusmanov, S.A., Plasma electrolytic saturation of steels with nitrogen and carbon, Surf. Coat. Technol., 2016, vol. 307, p. 1194.
  17. Bard, A.J. and Faulkner, L.R., Electrochemical methods: Fundamentals and applications, N.Y.: Wiley, 2001. 864 p.
  18. El-Deab, M.S. and Ohsaka, T., Hydrodynamic voltammetric studies of the oxygen reduction at gold nanoparticles-electrodeposited gold electrodes, Electrochim. Acta, 2002, vol. 47, p. 4255.
  19. Kuzume, A., Herrero, E., and Feliu, J.M., Oxygen reduction on stepped platinum surfaces in acidic media, J. Electroanal. Chem., 2007, vol. 599, p. 333.
  20. Rodriguez, P., Tichelaar, F.D., Koper, M.T.M., and Yanson, A.I., Cathodic corrosion as a facile and effective method to prepare clean metal alloy nanoparticles, J. Am. Chem. Soc., 2011, vol. 133, p. 17626.
  21. Frumkin, A.N., Hydrogen overvoltage and adsorption phenomena. Pt II, Adv. Electrochem. and Electrochem. Engng., 1963, vol. 3, p. 287.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2026 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).