Supercapacitors for extreme temperatures. Review

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This review considers the literature on electrochemical supercapacitors (ECSC) operating at extreme temperatures from –80°C to +220°C, which is very important for practice. The influence of the following methods and factors on the efficiency of the ECSC at extreme temperatures is considered: the use of ionic liquids as an electrolyte: the use of a modified gel electrolyte, a combined electrolyte, aqueous electrolytes with a low freezing point; the use of acetonitrile as an electrolyte solvent; the use of clay as a solid electrolyte; application of solid-state EСSC; application of electrodes with an optimized porous structure; the use of graphene and pseudocapacitive electrodes; the use of solar cells; use of combined techniques to create supercapacitors for extreme temperatures. Undoubtedly. This review will be of great interest both for fundamental electrochemistry and for practice.

About the authors

Yu. M. Volfkovich

A.N. Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences

Author for correspondence.
Email: yuvolf40@mail.ru
Russian Federation, Moscow

References

  1. Conway, B., Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Berlin, Germany. Springer Science & Business Media, 2013, 636 р.
  2. Bagotsky, V.S., Skundin, A.M., and Volfkovich, Yu. M., Electrochemical Power Sources. Batteries, Fuel Cells, Supercapacitors. N.J.: Jhon Wiely & Sons Inc. Publisher, 2015, 372 р.
  3. Вольфкович, Ю.М. Электрохимические суперконденсаторы (обзор). Электрохимия. 2021. Т. 57. С. 197. [Volfkovich, Yu. M., Electrochemical Supercapacitors (a Review), Russ. J. Electrochem., 2021, vol. 57, p. 311.]
  4. Nithya, V.D. and Arul, N.S., Review on a-Fe2O3 based negative electrode for high performance supercapacitors, J. Power Sources, 2016, vol. 327, p. 97.
  5. Yue-feng, S., Feng, W., Li-ying, B., and Zhao-hui,Y., RuO2/activated carbon composites as a positive electrode in an alkaline electrochemical capacitor, New Carbon Materials, 2007, vol. 22, p. 53.
  6. Zhanga, W.J. and Huang, K.G., A review of recent progress in molybdenum disufide-based supercapacitors and batteries, Inorg. Chem. Front, 2017, vol. 4, p. 1602.
  7. Snook, G.A., Kao, P., and Best, A.S., Conducting-polymer-based supercapacitor devices and electrodes, J. Power Sources, 2011, vol. 196, p. 1.
  8. Huang, Z., Li, L., Wang, Y., Zhang, C., and Liu, T., Polyaniline/graphene nanocomposites towards high-performance supercapacitors: A review, Composites Commun., 2018, vol. 8, p. 83.
  9. Kim, B.C., Kwon, J.S., Ko, J.M., Park, J.H., Too, C.O., and Wallace, G.G., Preparation and enhanced stability of flexible supercapacitor prepared from Nafion/polyaniline nanofiber, Synthetic Metals, 2010, vol. 160, p. 94.
  10. Cong, H.P., Ren, X.C., Wang, P., and Yu, S.H., Flexible graphene–polyaniline composite paper for high-performance supercapacitor, Energy Environ. Sci., 2013, vol. 6, p.1185.
  11. Yang, M., Cheng, B., Song, H., and Chen, X., Preparation and electrochemical performance of polyaniline-based carbon nanotubes as electrode material for supercapacitor, Electrochim. Acta, 2010, vol. 55, p. 7021.
  12. Vorotyntsev, M.A., Konev, D.V., Devillers, Ch.H., Bezverkhyy, I., and Heintz, O., Electroactive polymeric material with condensed structure on the basis of magnesium (II) polyporphine, Electrochim. Acta, 2011, vol. 56, p. 3436.
  13. Volfkovich, Yu.M., Sergeev, A.G., Zolotova, T.K., Afanasiev, S.D., Efimov, O.N., and Krinichnaya, E.P., Macrokinetics of polyaniline based electrode: effects of porous structure, microkinetics, diffusion, and electrical double layer, Electrochim. Acta, 1999, vol. 44, p. 1543.
  14. Algharaibeh, Z. and Pickup, P.G., An asymmetric supercapacitor with anthraquinone and dihydroxybenzene modified carbon fabric electrodes, Electrochem. Commun., 2011, vol. 13, p. 147.
  15. Beliakov, A.I. and Brintsev, A.M., Hybrid supercapacitor NiOOH / KOH/C/. Proc. 9th Int. Seminar on Double Layer Capacitors and Similar Energy Storage Devices. Deerfield Beach. Florida, 1999, V. 9.
  16. Volfkovich, Yu.M. and Shmatko, P.A., Electric Double Layer Capacitor, Patent US 6, 628, 504, 2003.
  17. Banerjee, A., Ravikumar, M.K., Jalajakshi, A., Kumar, P.S., Gaffoor, S.A., and Shukla, A.K., Substrate integrated Lead-Carbon hybrid ultracapacitor with flooded, absorbent glass mat and silica-gel electrolyte configurations, J. Chem. Sci., 2012, vol.124, p. 747.
  18. Kosova, N.V., Kulova, T.L., Nikolskaya, N.F., Podgornova, O.A., Rychagov, A.Yu., Sosenkin, V.E., and Volfkovich, Yu.M., Effect of porous structure of LiCoPO4 on its performance in hybrid supercapacitor, J. Solid State Electrochem., 2019, vol. 23, p. 1981.
  19. Singh, M.K. and Hashmi, S.A., Performance of solid-state hybrid supercapacitor with LiFePO4/AC composite cathode and Li4Ti5O12 as anode, Ionics, 2017, vol. 23, p. 1.
  20. Li, H., Cheng, L., and Xia, Y.A., Hybrid electrochemical supercapacitor based on a 5 V Li-Ion battery cathode and active carbon, Electrochem. Solid-State Lett., 2005, vol. 8, p. A433.
  21. Genc, R., Alas, M.O., Harputlu, E., Repp, S., Kremer, N., Castellano, M., Colak, S.G., Ocakoglu, K., and Erdem, E., High-Capacitance Hybrid Supercapacitor Based on Multi-Colored Fluorescent Carbon-Dots, 2017, Scientific reports 7. Article number: 11222, p. 1.
  22. Cai, J.J., Kong, L.B., Zhang, J., Luo, Y.C., and Kang, L., A novel polyaniline/mesoporous carbon nano-composite electrode for asymmetric supercapacitor, Chinese Chem. Lett., 2010, vol. 21, p. 1509.
  23. Lu, Y., Zhang, S., Yin, J., Bai, C., Zhang, J., Li, Y., Yang, Y., Ge, Z., Zhang, M., Wei, L., Ma, M., Ma,Y., and Chen, Y., Mesoporous activated carbon materials with ultrahigh mesopore volume and effective specific surface area for high performance supercapacitors, Carbon, 2017, vol. 124, p. 64.
  24. Efimov, M.N., Sosenkin, V.E., Volfkovich, Yu.M., Vasilev, A.A., Muratov, D.G., Baskakov, S.A., Efimov, O.N., and Karpacheva, G.P., Electrochemical performance of polyacrylonitrile-derived activated carbon prepared via IR pyrolysis, Electrochem. Commun., 2018, vol. 96, p. 98.
  25. Borenstein, A., Hanna, O., Attias, R., and Luski, S., Thierry Brousse and Doron Aurbach. Carbon-based composite materials for supercapacitor electrodes: a review, J. Mater. Chem., A, 2017, vol. 5, p. 12653.
  26. Volfkovich, Yu.M., Bograchev, D.A., Mikhalin, A.A., and Bagotsky, V.S., Supercapacitor carbon electrodes with high capacitance, J. Solid State Electrochem., 2014, vol. 18, p. 1351.
  27. Ariyanto, T., Glaesel, J., Kern, A., Zhang, G., and Etzold, B.J., Improving control of carbide-derived carbon microstructure by immobilization of a transition-metal catalyst within the shell of carbide/carbon core–shell structures, Beilstein J. Nanotechnol., 2019, vol. 10, p. 419.
  28. Krüner, B., Odenwald, C., Tolosa, A., Schreiber, A., Aslan, M., Kickelbick, G., and Presser, V., Carbide-derived carbon beads with tunable nanopores from continuously produced polysilsesquioxanes for supercapacitor electrodes, Sustainable Energy Fuels, 2017, vol. 1, p. 1588.
  29. Dhaka, T.P., Chapter 8 - Simple Parallel-Plate Capacitors to High–Energy Density Future Supercapacitors: A Materials Review (Carbide-Derived Carbon- an overview), Emerging Materials for Energy Conversion and Storage, 2018, p. 247.
  30. Yang, X., Fei, B., Ma, J., Liu, Liu, X., Yang, S., Tian, G., Jiang, Z., Yang, S., Tian, G., and Jiang, Z., Porous nanoplatelets wrapped carbon aerogel by pyrolysis of regenerated bamboo cellulose aerogels as supercapacitor electrodes, Carbohydrate Polymers, 2018, vol. 180, p. 385.
  31. Yang, Z., Tian, J., Yin, Z., Cui, C., Qian, W., and Wei, F., Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: A review, Carbon, 2019, vol. 141, p. 467.
  32. Chee, W.K., Lim, W.K., Zainal, H.N, Huang, Z., Harrison, N.M., and Andou, Y., Flexible Graphene-Based Supercapacitors: A Review, J. Phys. Chem. C, 2016, vol. 120, p. 4153.
  33. Eftekhari, A., Shulga, Y.M., Baskakov, S.A., and Gutsev, G.L., Graphene oxide membranes for electrochemical energy storage and conversion, Intern. J. Hydrogen Energy, 2018, vol. 43, p. 2307.
  34. Shulga, Yu.M., Baskakov, S.A., Baskakova, Yu.V., Lobach, A.S., Kabachkov, E.N., Volfkovich, Yu.M., Sosenkin, V.E., Shulga, N.Yu., Nefedkin, S.I., Kumar, Y., and Michtchenko, A., Preparation of graphene oxide-humic acid composite-based ink for printing thin film electrodes for micro-supercapacitors, J. Alloys and Compounds, 2018, vol. 730, p. 88.
  35. Shulga, Yu.M., Baskakov, S.A., Baskakova, Y.V., Lobach, A.S., Volfkovich, Yu.M., Sosenkin, V.E., Shulga, N.Y., Parkhomenko, Y.N., Michtchenko, A., and Kumar, Y., Hybrid porous carbon materials derived from composite of humic acid, Microporous and Mesoporous Mater., 2017, vol. 245, p. 24.
  36. Kryazhev, Yu.G., Volfkovich, Yu.M., Mel’nikov, V.P., Rychagov, A.Yu., Trenikhin, M.V., Solodovnichenko, V.S., and Likholobov, V.A., Synthesis and study of electrochemical properties of nanocomposites with graphene-like particles integrated into a high-porosity carbon matrix, Protection of Metals and Phys. Chem. of Surfaces, 2017, vol. 53, p. 422.
  37. Ke, Q. and Wang, J., Graphene-based materials for supercapacitor electrodes e A review, J. Materiomics, 2016, vol. 2, p. 37.
  38. Lee, H. and Lee, K.S., Interlayer distance controlled graphene, supercapacitor and method of producing the same, Patent US 10, 214, 422 B2, 2019.
  39. Mohammadi, A., Arsalani, N., Tabrizi, A.G., Moosavifard, S.E., Naqshbandi, Z., and Ghadimi, L.S., Engineering rGO-CNT wrapped Co3S4 nanocomposites for high-performance asymmetric supercapacitors, Chem. Engineering J., 2018, vol. 334, p. 66.
  40. Volfkovich, Yu. M., Lobach, A.S., Spitsyna, N.G., Baskakov, S. A., Sosenkin, V.E., Rychagov, A.Yu., Kabachkov, E.N., Sakars, A., Michtchenko, A., and Shulga, Yu.M., Hydrophilic and Hydrophobic Pores in Reduced Graphene Oxide Aerogel, J. Porous Mater. 2019, vol. 26, p. 1111.
  41. Langendahl, P.-A., Roby, H., Potter, S., and Cook, M., Smoothing peaks and troughs: Intermediary practices to promote demand side response in smart grids, Energy Res. Soc. Sci., 2019, vol. 58, 101277.
  42. Chapaloglou, S., Nesiadis, A., Iliadis, P., Atsonios, K., Nikolopoulos, N., Grammelis, P., Yiakopoulos, C., Antoniadis, I., and, Kakaras, E., Smart energy management algorithm for load smoothing and peak shaving based on load forecasting of an island’s power system, Appl. Energy, 2019, vol. 238, p. 627.
  43. Reihani, E., Motalleb, M., Ghorbani, R., and Saad Saoud, L., Load peak shaving and power smoothing of a distribution grid with high renewable energy penetration, Renew. Energy. 2016, vol. 86, p. 1372.
  44. Shabshab, S.C., Lindahl, P.A., Nowocin, J.K., Donnal, J., Blum, D., Norford, L., and Leeb, S.B., Demand Smoothing in Military Microgrids through Coordinated Direct Load Control, IEEE Trans. Smart Grid, 2020, vol. 11, p. 1917.
  45. Yadav, N., Yadav, Ne., and Hashmi, S.A., Ionic liquid incorporated, redox-active blend polymer electrolyte for high energy density quasi-solid-state carbon supercapacitor, J. Power Sources, 2020, vol. 451, p. 1.
  46. Eftekhari, A., Supercapacitors tilizing ionic liquids, Energy Storage Mater., 2017, vol. 9, р.47.
  47. Bodin, C., Mourad, E., Zigah, D., Le, S., Vot, S.A., Freunberger, F., Favier, and Fontaine, O., Biredox ionic liquids: new opportunities toward high performances supercapacitors, Faraday Discussions, 2017, vol. 22, p.1.
  48. Lu, Y., Zhang, S., Yin, J., Bai, C., Zhang, J., Li, Y., Yang, Z., Ge, M., Zhang, L., Wei, M., Ma, M., Ma, Y., and Chen, Y., Mesoporous activated carbon materials with ultrahigh mesopore volume and effective specific surface area for high performance supercapacitors, Carbon, 2017, vol. 124, р. 64.
  49. Denshchikov, K.K., Izmaylova, M.Y. Zhuk, A.Z., Vygodskii, Y.S., Novikov, V.T., and Gerasimov, A.F., 1-Methyl-3-butylimidazolium tetraflouroborate with activated carbon for electrochemical double layer supercapacitors, Electrochim. Acta, 2010, vol.55, p. 7506.
  50. Budkov, Y.A., Kolesnikov, A.L., Goodwin, Z.A., Kiselev, M.G., and Kornyshev, A.A., Theory of electrosorption of water from ionic liquids, Electrochim. Acta, 2018, vol. 284, p. 346.
  51. Lin, Z., Barbara, D., Taberna, P.L, Katherine, Van Aken, L., Anasori, B., Gogotsi, Y., and Simon, P., Capacitance of Ti3C2TxM. Xene in ionic liquid electrolyte, J. Power Sources, 2016, vol. 326, p. 575.
  52. Yochelis, A., Transition from non-monotonic to monotonic electrical diffuse layers: impact of confinement on ionic liquids, Phys. Chem. Chem. Phys., 2014, vol.16, p. 2836.
  53. Ruiz, V., Huynh,T., Sivakkumar, S.R., and Pandolfo, A.G. Ionic liquid–solvent mixtures as supercapacitor electrolytes for extreme temperature operation, RSC Adv., 2012, vol. 2, p. 5591.
  54. Newell, R., Faure-Vincent, J., Iliev, B., and Schubert, T., A new high performance ionic liquid mixture electrolyte for large temperature range supercapacitor applications (− 70° C to 80° C) operating at 3.5 V cell voltage, Electrochim. Acta, 2018, vol. 267, p. 15.
  55. Zaccagnini, P., Serrapede, M., Armandi, M., and Bianco, S., A High-Temperature High-Pressure Supercapacitor based on Ionic Liquids for harsh environment applications, Electrochim. Acta, 2023, vol. 447, 142124.
  56. Huang, P., Pech, D., Lin, R., McDonough, J.K., On-chip micro-supercapacitors for operation in a wide temperature range, Electrochem. Commun., 2013, vol. 36, p.53.
  57. Chodankar, N.R., Patil, S.J., and Hwang, S.K., Supercapacitors operated at extremely low environmental temperatures, J. Mater. Chem., A, 2021, vol. 9, 26603.
  58. Zaccagnini, P., di Giovanni, D., Gomez, M.G., and Passerini, S., Flexible and high temperature supercapacitor based on laser-induced graphene electrodes and ionic liquid electrolyte, a de-rated voltage analysis, Electrochim. Acta, 2020, vol. 357, 136838.
  59. Dagousset, L., Pognon, G., Nguyen, G.T., and Vidal, F., Electrochemical characterisations and ageing of ionic liquid/γ-butyrolactone mixtures as electrolytes for supercapacitor applications over a wide temperature range, J. Power Sources, 2017, vol. 359, p. 242.
  60. Lee, J.H., Chae, J.S., Jeong, J.H., and Ahn, H.J., An ionic liquid incorporated in a quasi-solid-state electrolyte for high-temperature supercapacitor applications, Chem. Commun., 2019, vol. 55, p.15081.
  61. Shen, B., Guo, R., Lang, J., Liu, L., and Liu, L., A high-temperature flexible supercapacitor based on pseudocapacitive behavior of FeOOH in an ionic liquid electrolyte. J. Mater.Chem., A, 2016, vol. 4, p. 8316.
  62. Lu, N., Na, R., Li, L., Zhang, C., and Chen, Z. Rational design of antifreezing organohydrogel electrolytes for flexible supercapacitors, ACS Appl. Energy Mater., 2020, vol. 3, p. 1944.
  63. Wang, Z., Cheng, J., Zhou, J., Zhang, J., Huang, H., and Yang, J., All-climate aqueous fiber-shaped supercapacitors with record areal energy density and high safety, Nano Energy, 2018, vol. 50, p. 106.
  64. Jung, G., Lee, H., Park, H., Kim, J., Kim, J.W., and Kim, D.S. Temperature-tolerant flexible supercapacitor integrated with a strain sensor using an organohydrogel for wearable electronics, Chem. Engineering J., 2022, vol. 450, 138379.
  65. Zheng, Q., Li, X., Yang, Q., Li, C., Liu, G., and Wang, Y., High performance solid-state supercapacitors based on highly conductive organogel electrolyte at low temperature, J. Power Sources, 2022, vol. 524, 231102.
  66. Chen, M., Shi, X., Wang, X., Liu, H., Wang, S., and Meng, C., Low-temperature and high-voltage planar micro-supercapacitors based on anti-freezing hybrid gel electrolyte, J. Energy Chem., 2022, vol. 72, p.195.
  67. Yang, L., Zhou, G., Jin, Y., Sun, Y., Liu, Q., and Chen, C., Spatially confined building of environmental-adaptive hydrogel electrolyte for supercapacitors, J. Power Sources, 2022, vol. 548, 232015.
  68. Peng, K., Zhang, J., Yang, J., Lin, L., and Gan, Q., Green Conductive Hydrogel Electrolyte with Self-Healing Ability and Temperature Adaptability for Flexible Supercapacitors, ACS Appl. Mater. Interfaces, 2022, vol. 14, p. 39404.
  69. Liu, Z., Zhang, J., Liu, J., Long, Y., and Fang, L., Highly compressible and superior low temperature tolerant supercapacitors based on dual chemically crosslinked PVA hydrogel electrolytes, J. Mater. Chem., A, 2020, vol. 8, p. 6219.
  70. Wang, X., Zhang, Q., Zhao, L., and Hadi, M.K., A renewable hydrogel electrolyte membrane prepared by carboxylated chitosan and polyacrylamide for solid-state supercapacitors with wide working temperature, J. Power Sources, 2023, vol. 560, 232704.
  71. Wang, J., Gao, C., Hou, P., Liu, Y., Zhao, J., and Huo, P., All-bio-based, adhesive and low-temperature resistant hydrogel electrolytes for flexible supercapacitors, Chem. Engineering J., 2023, vol. 455, 140952.
  72. Wu, Y., Wang, S., Sang, M., Shu, Q., Zhang, J., and Xuan, S., A safeguarding and high temperature tolerant organogel electrolyte for flexible solid-state supercapacitors, J. Power Sources, 2021, vol. 505, 230083.
  73. Ye,W., Wang, H., Ning, J., Zhong, Y., and Hu, Y., New types of hybrid electrolytes for supercapacitors, J. Energy Chem., 2021, vol. 57, p. 219.
  74. Qian, Y., Yu, Y., Wu, M., Fan, Q., and Chai, C., Wide‐Temperature Flexible Supercapacitor of Organohydrogel Electrolyte and Its Combined Electrode, Chem. Europ. J., 2023, e202300123.
  75. Jiang,Y., Ma, K., Sun, M., Li,Y., and Liu, J., All‐Climate Stretchable Dendrite‐Free Zn‐Ion Hybrid Supercapacitors Enabled by Hydrogel Electrolyte Engineering, Energy and Environmental Mater., 2022, vol. 6, e12357.
  76. Lu, С. and Chen, X., All-temperature flexible supercapacitors enabled by antifreezing and thermally stable hydrogel electrolyte, Nano Lett., 2020, vol. 20, p. 1907.
  77. Hu, Q., Cui, S., Sun, K., Shi, X., Zhang, M., and Peng, H., An antifreezing and thermally stable hydrogel electrolyte for high-performance all-in-one flexible supercapacitor, J. Energy Storage, 2022, vol. 50, 104231.
  78. Xu, J., Jin, R., Ren, X., and Gao, G., A wide temperature-tolerant hydrogel electrolyte mediated by phosphoric acid towards flexible supercapacitors, Chem. Engineering J., 2021, vol. 413, 127446.
  79. Li, X., Liu, L., Wang, X., Ok, Y.S., Elliott, J.A., and Chang, S.X., Flexible and self-healing aqueous supercapacitors for low temperature applications: polyampholyte gel electrolytes with biochar electrodes, Scientific reports, 2017, vol. 7, 1685.
  80. Chi, F., Hu, Y., He, W., Weng, C., Cheng, H., Li, C., and Qu, L., Graphene Ionogel Ultra‐Fast Filter Supercapacitor with 4 V Workable Window and 150° C Operable Temperature, Nano- Micro Small, 2022, vol. 18, 2200916.
  81. Liu, Y., Li, H., Wang, X., Lv, T., Dong, K., and Chen, Z., Flexible supercapacitors with high capacitance retention at temperatures from− 20 to 100° C based on DMSO-doped polymer hydrogel electrolytes, J. Mater. Chem., A, 2021, vol. 9, p. 12051.
  82. Zhang, X., Chang, Y.U., and Jinhe, Y.U., Recent progress of polymer electrolytes for supercapacitors under extreme environments, Energy Storage Sci. and Technol., 2022, vol. 11, p. 3808.
  83. Yang, Y., Wang, K.P., Zang, Q., Shi, Q., and Wang, Y., Anionic organo-hydrogel electrolyte with enhanced ionic conductivity and balanced mechanical properties for flexible supercapacitors, J. Mater. Chem., A, 2022, vol. 10, p. 11277.
  84. Zhong, M., Tang, Q.F., Zhu, Y.W., and Chen, X.Y., An alternative electrolyte of deep eutectic solvent by choline chloride and ethylene glycol for wide temperature range supercapacitors, J. Power Sources, 2020, vol. 452, 227847.
  85. Lu, X., Jiménez-Riobóo, R.J., and Leech, D., Aqueous-Eutectic-in-Salt Electrolytes for High-Energy-Density Supercapacitors with an Operational Temperature Window of 100° C, from− 35 to+ 65° C, ACS Appl. Mater. Interfaces, 2020, vol. 12, p. 29181.
  86. Wei,W., Chen, W., Mi, L., Xu, J., and Zhang, J., High-rate performance aqueous-based supercapacitors at− 30° C driven by novel 1D Ni (OH) 2 nanorods and a two-solute electrolyte, J. Mater. Chem., A, 2021, vol. 9, p. 23860.
  87. Fischer, J., Pohle, B., Dmitrieva, E., and Thümmler, K., Symmetric supercapacitors with cellulose-derived carbons and Na2SO4 electrolytes operating in a wide temperature range, J. Energy Storage, 2022, vol. 55, 105725.
  88. Sun, Y., Wang, Y., Liu, L., Liu, B., Zhang, Q., and Wu, D., Towards the understanding of acetonitrile suppressing salt precipitation mechanism in a water-in-salt electrolyte for low-temperature supercapacitors, J. Mater. Chem., A, 2020, vol. 8, 17998.
  89. Iwama, E., Taberna, P.L., Azais, P., and Brégeon, L., Characterization of commercial supercapacitors for low temperature applications, J. Power Sources, 2012, vol. 219, p. 235.
  90. Borges, R.S., Reddy, A.L., Rodrigues, M.T., and Gullapalli, H., Supercapacitor operating at 200 degrees celsius, Scientific reports, 2013, http://creativecommons.org/licenses/by-nc-sa/3.0
  91. Wang, Z., Chu, X., Xu, Z., Su, H., Yan, C., and Liu, F., Extremely low self-discharge solid-state supercapacitors via the confinement effect of ion transfer, J. Mater. Chem., A, 2019, vol. 7, p. 8633.
  92. Tu, J., Pan, J., Liu, X., Yan,Y., Shi,Y., and Yu, X., A flexible solid-state supercapacitor with extreme low-temperature tolerance based on an ion conducting ice gel electrolyte, J. Mater. Chem., A, 2022, vol. 10, p. 7036.
  93. Chaichi, A., Venugopalan, G., and Devireddy, R., A solid-state and flexible supercapacitor that operates across a wide temperature range, ACS Appl. Energy Mater., 2020, vol. 3, p. 5693.
  94. Liu, L., Liu, C., Wang, M., Li, B., Wang, K., Fan, X., and Li, N., Low self-discharge all-solid-state electrochromic asymmetric supercapacitors at wide temperature toward efficient energy storage, Chem. Engineering J., 2023, vol. 456, 141022.
  95. Liu, L., Dou, Q., Sun, Y., Lu,Y., Zhang, Q., and Meng, J., A moisture absorbing gel electrolyte enables aqueous and flexible supercapacitors operating at high temperatures, J. Mater. Chem., A, 2019, vol. 7, p. 20398.
  96. Hong, J., Liu, J., Xiong, Qin, S., Xu, X., and Meng, X., Temperature-dependent pseudocapacitive behaviors of polyaniline-based all-solid-state fiber supercapacitors, Electrochem. Commun., 2023, vol. 148, 107456.
  97. Liu, J., Khanam, Z., Ahmed, S., Wang, and Wang, T., A study of low-temperature solid-state supercapacitors based on Al-ion conducting polymer electrolyte and graphene electrodes, J. Power Sources, 2021, vol. 488, 229461.
  98. Asbani, B., Douard, C., Brousse, T., and Le Bideau, J., High temperature solid-state supercapacitor designed with ionogel electrolyte, Energy Storage Mater., 2019, vol. 21, p. 439.
  99. Qiu, Y., Wang, Z., Jin, M., Chen, J, Miao, C., Zhang, S., and Lai, L., Amorphous carbon interweaved mesoporous all-carbon electrode for wide-temperature range supercapacitors, Electrochim. Acta, 2022, vol. 424, 140622.
  100. Sun, L., Zhou,Y., Li, L., Zhou, H., Liu, X., and Zhang, Q., Facile and green synthesis of 3D honeycomb-like N/S-codoped hierarchically porous carbon materials from bio-protic salt for flexible, temperature-resistant supercapacitors, Appl. Surface Sci., 2019, vol. 467–468, p. 382.
  101. Tõnurist, K., Thomberg, T., and Jänes, A., Specific performance of supercapacitors at lower temperatures based on different separator materials, J. Electrochem. Soc., 2013, vol. 160, p. A449.
  102. Kim, D.W., Jung, S.M., and Jung, H.Y., Long term thermostable supercapacitor using in-situ SnO2 doped porous graphene aerogel, J. Power Sources, 2020, vol. 448, 227422.
  103. Zang, X., Zhang, R., Zhen, Z., Lai, W., Yang, C., and Kang, F., Flexible, temperature-tolerant supercapacitor based on hybrid carbon film electrodes, Nano Energy, 2017, vol. 40, p. 224.
  104. Weng, Y.T., Pan, H.A., Wu, N.L., and Chen, G.Z., Titanium carbide nanocube core induced interfacial growth of crystalline polypyrrole/polyvinyl alcohol lamellar shell for wide-temperature range supercapacitors, J. Power Sources, 2015, vol. 274, p. 1118.
  105. Pan, H.A., Ghodbane, O., and Weng, Y.T., Investigating mechanisms underlying elevated-temperature-induced capacity fading of aqueous MnO2 polymorph supercapacitors: cryptomelane and birnessite, J. Electrochem. Soc., vol. 162, p. A5106.
  106. Pang, M., Long, G., Jiang, S., Ji, Y., Han, W., Wang, B., and Liu, X., One pot low-temperature growth of hierarchical δ-MnO2 nanosheets on nickel foam for supercapacitor applications, Electrochim. Acta, 2015, vol. 161, p. 297.
  107. Iqbal, M., Saykar, N.G., Arya, A., and Banerjee, I., High-performance supercapacitor based on MoS2@ TiO2 composite for wide range temperature application, J. Alloys and Compounds, 2021, vol. 883, 160705.
  108. Gupta, R.K., Candler, J., Palchoudhury, S., and Ramasamy, K., Flexible and High Performance Supercapacitors Based on NiCo2O4 for Wide Temperature Range Applications, Scientific reports, 2015, vol. 5, 15265.
  109. Sun,Y., Ma, P., Liu,L., Chen, J., Zhang, X., and Lang, J., Solar‐thermal driven self‐heating of micro‐supercapacitors at low temperatures, Solar RRL, 2018, vol. 2, 1800223.
  110. Ma, P., Sun, Y., Zhang, X., Chen, J., Yang, B., and Zhang, Q., Spinel-type solar-thermal conversion coatings on supercapacitors: An effective strategy for capacitance recovery at low temperatures, Energy Storage Materials, 2019, vol. 23, p. 159.
  111. Yu, X., Li, N., Zhang, S., Liu, C., Chen, L., and Xi, M., Enhancing the energy storage capacity of graphene supercapacitors via solar heating, J. Mater.Chem., A, 2022, vol. 10, p. 3382.
  112. Wu, X., Meng, L., Wang, Q., Zhang, W., and Wang, Y., Outstanding performance supercapacitor based on the ternary graphene-silver-polypyrrole hybrid nanocomposite from− 45 to 80°C, Mater. Chem. and Phys., 2018, vol. 206, p. 259.
  113. Chao, J., Yang, L, Liu, J., Hu, R., and Zhu, M., Oxygen-Incorporated and Polyaniline-Intercalated 1T/2H Hybrid MoS2 Nanosheets Arrayed on Reduced Graphene Oxide for High-Performance Supercapacitors, J. Phys. Chem. C, 2018, vol. 122, 15, p. 8128.
  114. Zhou, Y., Ghaffari, M., Lin, M., Xu, H., Xie, H., and Koo, C.M., High performance supercapacitor under extremely low environmental temperature, RSC Adv., 2015, vol. 5, p. 71699.
  115. Huang, J., Han, S., Zhu, J., Wu, Q., and Chen, H., Mechanically Stable All Flexible Supercapacitors with Fracture and Fatigue Resistance under Harsh Temperatures, Advanced Functional Mater., 2022, vol. 32, 2205708.
  116. Kumaravel, V., Bartlett, J., and Pillai, S.C., Solid electrolytes for high‐temperature stable batteries and supercapacitors, Advanced Energy Mater., 2021, vol. 11, 2002869.
  117. Kim, D.W., Jung, S.M., and Jung, H.Y., A super-thermostable, flexible supercapacitor for ultralight and high performance devices, J. Mater. Chem., A, 2020, vol. 8, p. 532.
  118. Marie-Francoise, J.N., Gualous, H., and Berthon, A., Supercapacitor thermal-and electrical-behaviour modelling using ANN, IEE Proceedings-Electric Power Appl., 2006, vol. 153, p. 255.

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies