FEATURES OF THE EFFECT OF SILVER CHALCOGENIDES ON THE SOFTENING TEMPERATURE OF CHALCOGENIDE GLASSES WITH IONIC CONDUCTIVITY

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The analysis of the temperature change of softening of chalcogenide glass with ion conductivity by silver from the content of its chalcogenides is given. Explanation of peculiarities of temperature change of softening of glass on the basis of chalcogenides of silver is offered by coexistence of covalent bonds of silver-chalcogen (Ag-Ch) and metallophilic bonds of silver-silver (Ag-Ag). The large number of systems considered demonstrates the general regularity, which allows to assume, that the degree of connectivity of silver in the HHS mesh due to formation of it in addition to covalent metal-philic bonds actually significantly exceeds its formal oxidation degree.
Metallophilic interactions are expected to influence not only the softening temperature, but also the variation of many other important properties in the glass, including the ion transfer mechanism by silver.

About the authors

Yu. S. Tverjanovits

St. Petersburg State University

Email: tvaza@mail.ru
198504, Saint Petersburg, Petrodvorets, University Prospekt, 26

T. R. Fazletdinov

St. Petersburg State University

Email: tvaza@mail.ru
198504, Saint Petersburg, Petrodvorets, University Prospekt, 26

V. V. Tomayev

St.Petersburg Institute of Technology (Technical University); Saint-Petersburg Mining University

Author for correspondence.
Email: tvaza@mail.ru
190013, St.Petersburg, Moscow Avenue, house 26; 199106, Saint-Petersburg, V.O., 21-l.,2

References

  1. Salmon, P.S., Xin, S., and Fischer, H.E., Structure of the glassy fast-ion conductor AgPS3 by neutron diffraction, Phys. Rev. B, 1998, vol. 58, no. 10, p. 6115.
  2. Zeidler, A., Salmon, P.S., Whittaker, D.A.J., Piarristeguy, A., Pradel, A., Fischer, H.E., Benmore, C.J., and Gulbiten, O., Structure of semiconducting versus fast-ion conducting glasses in the Ag–Ge–Se system, R. Soc. Open Sci., 2018, vol. 5, p. 171401.
  3. Bychkov, E., Price, D.L., Benmore, C.J., and Hannon, A.C., Ion Transport Regimes in Chalcogenide and Chalcohalide Glasses: From the Host to the Cation-Related Network Connectivity, Solid State Ionics, 2002, vol. 154–155, p. 349.
  4. Bokova, M., Alekseev, I., and Bychkov, E., Mixed Cation Effect in Ag2S–Tl2S–GeS–GeS2 Glasses: Conductivity and Tracer Diffusion Studies, Solid State Ionics, 2015, vol. 273, p. 55.
  5. Shi, X., Chen, H., Hao, F., Liu, R., Wang, T., Qiu, P., Burkhardt U., Grin Y., and Chen, L., Room-temperature ductile inorganic semiconductor, Nat. Mater., 2018, vol. 17. p. 421.
  6. Tveryanovich, Y.S., Fazletdinov, T.R., Tverjanovich, A.S., Fadin, Y.A., and Nikolskii, A.B., Features of Chemical Interactions in Silver Chalcogenides Responsible for Their High Plasticity, Russ. J. Gen. Chem., 2020, vol. 90, no. 11, p. 2203.
  7. Evarestov, R.A., Panin, A.I., and Tverjanovich, Y.S., Argentophillic Interactions in Argentum Chalcogenides: First Principles Calculations and Topological Analysis of Electron Density, J. Comput. Chem., 2021, vol. 42, no. 4, p. 242.
  8. Tveryanovich, Yu.S., Fazletdinov, T.R., Tverjanovich, A.S., Pankin, D.V., Smirnov, E.V., Tolochko, O.V., Panov, M.S., Churbanov, M.F., Skripachev, I.V., and Shevelko, M.M., Increasing the Plasticity of Chalcogenide Glasses in the System Ag2Se–Sb2Se3–GeSe2, Chem. Mater., 2022, vol. 34, no. 6, p. 2743.
  9. Kumara, L.S.R., Ohara, K., Kawakita, Y., Jóvári, P., Hidaka, M., Eon Sung, N., Beuneu, B., and Takeda, S., Local Structure of Superionic Glass Agx(GeSe3)1 – x, x = 0.565, EPJ Web Conf., 2011, vol. 15, p. 2.
  10. Kaban, I., Hoyer, W., Jóvári, P., Petkova, T., Stoilova, A., Schöps, A., Bednarcik, J., and Beuneu, B., Atomic Structure of As34Se51Ag15 and As34Te51Ag15 Glasses Studied with XRD, ND and EXAFS and Modeled with RMC. In J.P. Reithmaier (eds.), Nanostructured Mater. for Advanced Technol. Appl., 2009, p. 341.
  11. Salmon, Ph. S. and Liu, J., The coordination environment of Ag and Cu in ternary chalcogenide glasses, J. Non-Cryst. Solids, 1996, vol. 205–207, p. 172.
  12. Akola, J., Jovari, P., Kaban, I., Voleska, I., Kolar, J., Wagner, T., and Jones, R.O., Structure, electronic, and vibrational properties of amorphous AsS2 and AgAsS2: Experimentally constrained density functional study, Phys. Rev. B, 2014, vol. 89, p. 064202.
  13. Gleason, Benn, Designing Optical Properties in Infrared Glass, 2015, All Dissertations. 191 p.
  14. Zhang, M., Mancini, S., Bresser, W., and Boolchand, P., Variation of glass transition temperature, Tg, with average coordination number, (m), in network glasses: evidence of a threshold behavior in the slope IdTg/d❬m❭)I at the rigidity percolation threshold (❬m❭ = 2.4), J. Non-Crystal. Solids, 1992, vol. 151, p. 149.
  15. George, Achamma, Sushamma, D., and Predeep, P., Effect of Indium Content on the Optical and Other Physical Characteristics of As–Te Glass System, Chalcogenide Letters, 2006, vol. 3, no. 4, p. 33.
  16. Wang, Y., Mitkova, M., Georgiev, D.G., Mamedov, S., and Boolchand, P., Macroscopic phase separation of Se-rich (x < 1/3) ternary Agy(GexSe1 – x)1 – y glasses, J. Phys.: Condens. Matter, 2003, vol. 15, p. S1573.
  17. Olekseyuk, I.D., Kogut, Yu.M., Parasyuk, O.V., Piskach, L.V., Gorgut, G.P., Kus’ko, O.P., Pekhnyo, V.I., and Volkov, S.V., Glass-formation in the Ag2Se–Zn(Cd,Hg)Se–GeSe2 systems, Chem. Met. Alloys, 2009, vol. 2, p. 146.
  18. Vassilev, V.S., Boycheva, S.V., and Ivanova, Z.G., Glass formation and physicochemical properties of the GeSe2–Sb2Se3–Ag2Se(ZnSe) systems, J. Mater. Sci. Letters, 1998, vol. 17, p. 2007.
  19. Parasyuk, O.V., Fedorchuk, A.O., Kogut, Yu.M., Piskach, L.V., and Olekseyuk, I.D., The Ag2S–ZnS–GeS2 system: Phase diagram, glass-formation region and crystal structure of Ag2ZnGeS4, J. Alloys and Compounds, 2010, vol. 500, p. 26.
  20. Robinel, E., Caretye, B., and Ribes, M., Silver Sulfide Based Glasses. Glass forming regions, structure and ionic conduction of glasses in GeS2–Ag2S and GeS2–Ag2S–AgI systems, J. Non-Crystal. Solids, 1983, vol. 57, p. 49.
  21. Salam, F., Giuntini, J.C., Soulayman, S.S., and Zanchetta, J.V., Electrical conductivity of (Ag2S)x–(GeS2)1 – x glasses. Appl. Phys. A, 1995, vol. 60, p. 309.
  22. Bokova, M., Alekseev, I., and Bychkov, E., Mixed cation effect in Ag2S–Tl2S–GeS–GeS2 glasses: Conductivity and tracer diffusion studies, Solid State Ionics, 2015, vol. 273, p. 55.
  23. Borisova, Z., Glassy Semiconductors; Springer US, 1981. 506 p.
  24. Kawamoto, Y., Agata, M., and Tsuchihash, S., Structure of Glasses in the Systems As2S3–Tl2S and As2S3–Ag2S, J. Ceram. Associat. Japan, 1974, vol. 82, p. 502.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (227KB)
3.

Download (33KB)
4.

Download (189KB)
5.

Download (58KB)
6.

Download (31KB)
7.

Download (63KB)
8.

Download (98KB)

Copyright (c) 2023 Ю.С. Тверьянович, Т.Р. Фазлетдинов, В.В. Томаев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies