Analysis of Impedance Spectra of a Lithium Electrode by the Distribution of Relaxation Times

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The possibility of analyzing the electrochemical impedance spectra of lithium–lithium cells using the Distribution of Relaxation Times (DRT) function is studied. A comparative analysis of the electrochemical impedance spectra of lithium–lithium cells obtained during long-term storage at a constant temperature and at different temperatures was performed using the method of either equivalent electrical circuits or the DRT function. The analysis of the impedance of lithium–lithium cells by the DRT function is shown to allow estimating the number of layers in the surface film on the lithium electrodes and evaluating their physical parameters—the resistance and capacitance. It has been established that with a long exposure of lithium–lithium cells at the temperature of 30°C, the number of layers in the surface film and its resistance decreased. With the increase in the temperature, the physical properties of the layers of the surface film are differentiated and its total resistance decreased. The analysis of the electrochemical impedance spectra of lithium–lithium cells by the DRT functions is more informative than the method of equivalent electrical circuits.

About the authors

D. V. Kolosnitsyn

Ufa Institute of Chemistry, Ufa Federal Research Centre, Russian Academy of Science

Email: dkolosnitsyn@gmail.com
Ufa, 450054 Russia

D. A. Osipova

Ufa Institute of Chemistry, Ufa Federal Research Centre, Russian Academy of Science

Email: dkolosnitsyn@gmail.com
Ufa, 450054 Russia

E. V. Kuzmina

Ufa Institute of Chemistry, Ufa Federal Research Centre, Russian Academy of Science

Email: dkolosnitsyn@gmail.com
Ufa, 450054 Russia

E. V. Karaseva

Ufa Institute of Chemistry, Ufa Federal Research Centre, Russian Academy of Science

Email: dkolosnitsyn@gmail.com
Ufa, 450054 Russia

V. S. Kolosnitsyn

Ufa Institute of Chemistry, Ufa Federal Research Centre, Russian Academy of Science

Author for correspondence.
Email: dkolosnitsyn@gmail.com
Ufa, 450054 Russia

References

  1. Остроушко, Ю.И., Бичухин, П.И., Алексеева, В.В. и др. Литий, его химия и технология, М.: Атомиздат, 1960. С. 81. [Ostroushko, Yu.I., Bichuhin, P.I., Alekseeva, V.V., and others, Lithium, its chemistry and technology (in Russian), Moscow: Atomizdat, 1960, 81 p.]
  2. Huston, R. and Butler, J.N., The Standard Potential of the Lithium Electrode in Aqueous Solutions, J. Phys. Chem., 1968, vol. 72, no. 12, p. 4263.
  3. Aurbach, D., Daroux, M., McDougall, G., and Yeager, E.B., Spectroscopic studies of lithium in an ultrahigh vacuum system, J. Electroanal. Chem., 1993, vol. 358, p. 63.
  4. Zaban, A., Zinigrad, E., and Aurbach, D., Impedance Spectroscopy of Li Electrodes. 4. A General Simple Model of the Li-Solution Interphase in Polar Aprotic Systems, J. Phys. Chem., 1996, vol. 100, p. 3089.
  5. Иванищев, А.В., Чуриков, А.В., Иванищева, И.А. Импедансная спектроскопия литий-углеродных электродов. Электрохимия. 2008. Т. 44. С. 553.
  6. Чуриков, А.В., Придатко, К.И., Иванищев, А.В. Спектроскопия импеданса пленочных литий-оловянных электродов. Электрохимия. 2008. Т. 44. С. 594.
  7. Букун, Н.Г., Укше, А.Е. Импеданс твердоэлектролитных систем (обзор). Электрохимия. 2009. Т. 45. С. 13.
  8. Стойнов, З.Б., Графов, Б.М., Савова-Стойнова, Б., Елкин, В.В. Электрохимический импеданс, М.: Наука, 1991. 336 с. [Stojnov, Z.B., Grafov, B.M., Savova-Stojnova, B., and Elkin, V.V., Electrochemical impedance (in Russian), Moscow: Science, 1991, 336p.]
  9. Chen, X., Li, L., Liu, M., Huang, T., and Yu, A., Detection of lithium plating in lithium-ion batteries by distribution of relaxation times, J. Power Sources, 2021, vol. 496, 229867.
  10. Espinosa-Villatoro, E., Weker, J.N., Ko, J.S., and Quiroga-González, E., Tracking the evolution of processes occurring in silicon anodes in lithium ion batteries by 3D visualization of relaxation times, J. Electroanal. Chem., 2021, vol. 892, 115309.
  11. Harms, N., Heins, T.P., and Schröder, U., Application of Localized Electrochemical Impedance Spectroscopy to Lithium-Ion Cathodes and in situ Monitoring of the Charging Process, Energy Technology, 2016, vol. 4, p. 1514.
  12. Ivers-Tiffée, E. and Weber, A., Evaluation of electrochemical impedance spectra by the distribution of relaxation times, J. Ceram. Soc. of Japan, 2017, vol. 125 (4), p. 193.
  13. Осинкин, Д.А., Журавлев, В.Д. Никель-керамические электроды с повышенным содержанием никеля для электрохимических устройств на твердых электролитах. Журн. прикл. химии. 2020. Т. 93. № 2. С. 298.
  14. Dierickx, S., Mundloch, T., Weber, A., and Ivers-Tiffée, E., Advanced impedance model for double-layered solid oxide fuel cell cermet anodes, J. Power Sources, 2019, vol. 415, p. 69.
  15. Qu, H., Zhang, X., Ji, W., Zheng, D., Zhang, X., and Ji, W., Impedance investigation of the high temperature performance of the solid-electrolyte-interface of a wide temperature electrolyte, J. Colloid and Interface Sci., 2022, vol. 608, p. 3079.
  16. Гаврилюк, А.Л., Осинкин, Д.А., Бронин, Д.И. О применении метода регуляризации Тихонова для вычисления функции распределения времен релаксации в импедансной спектроскопии. Электрохимия. 2017. Т. 53. С. 651.
  17. Schichlein, H., Muller, A.C., Voigts, M., Krugel, A., and Ivers-Tiffee, E., Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells, J. Appl. Electrochem., 2002, vol. 32, p. 875.
  18. Macutkevic, J., Banys, J., and Matulis, A., Determination of the Distribution of the Relaxation Times from Dielectric Spectra, Nonlinear Analysis: Modelling and Control, 2004, vol. 9, p. 75.
  19. Fuoss, R.M. and Kirkwood, J.D., Electrical Properties of Solids. VIII. Dipole Moments in Polyvinyl Chloride-Diphenyl Systems, J. Amer. Chem. Soc., 1941, vol. 63, p. 385.
  20. Прилежаева, И.Н., Соловьев, Н.П., Храмушин, Н.И. Способ преобразования спектров импеданса для определения механизма электрохимической реакции. Электрохимия. 2004. Т. 40. С. 1425.
  21. Shafiei Sabetac, P. and Sauer, D.U., Separation of predominant processes in electrochemical impedance spectra of lithium-ion batteries with nickel-manganese-cobalt cathodes, J. Power Sources, 2019, vol. 425, p. 121.
  22. Illig, J., Ender, M., Chrobak, T., Schmidt, J. P., Klotz, D., and Ivers-Tiffee, E., Separation of Charge Transfer and Contact Resistance in LiFePO4-Cathodes by Impedance Modeling, J. Electrochem. Soc., 2012, vol. 159(7), p. A952.
  23. Kube, A., Strunz, W., Wagner, N., and Friedrich, K.A., Evaluation of electrochemical impedance spectra of batteries (Li–air/Zn–air) for aqueous electrolytes, Electrochim. Acta, 2021, vol. 396, 139261.
  24. Wan, T.H., Saccoccio, M., Chen, C., and Ciucci, F., Influence of the Discretization Methods on the Distribution of Relaxation Times Deconvolution: Implementing Radial Basis Functions with DRTtools, Electrochim. Acta, 2015, vol. 184, p. 483.
  25. Свид. 2022665869 РФ. Свидетельство об официальной регистрации программы для ЭВМ. “ElChemLab, DRT Analyzer” / Д.В. Колосницын; правообладатель УФИЦ РАН (RU). Опубл. 23.08.2022, Реестр программ для ЭВМ. 1 с. [2022665869 RF. “ElChemLab, DRT Analyzer” / D.V. Kolosnitsyn; UFRC RAS (RU). – published. 23.08.2022].

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (183KB)
3.

Download (35KB)
4.

Download (192KB)
5.

Download (243KB)
6.

Download (118KB)
7.

Download (202KB)
8.

Download (163KB)
9.

Download (333KB)
10.

Download (95KB)

Copyright (c) 2023 Д.В. Колосницын, Д.А. Осипова, Е.В. Кузьмина, Е.В. Карасева, В.С. Колосницын

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies