Corrosion of Low-Carbon Steel in a Flow of Phosphoric Acid Solution Containing Iron(III) Phosphate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Theoretical aspects of low-carbon steel corrosion in H3PO4 solutions containing FePO4 are considered. In the system under study, reactions of iron with the acid solution and Fe(III) salt are thermodynamically allowed. The oxidizing power of this medium, characterized by the Fe(III)/Fe(II) couple redox potential, is mainly determined by its anionic composition. Phosphate anions of a corrosive medium bind Fe(III) cations into complex compounds, reducing their oxidizing ability. In H3PO4 solutions containing FePO4 and Fe3(PO4)2, the dependence of the system’s redox potential on the Fe(III) and Fe(II) cation relative content is poorly described by the Nernst equation, which is due to the nonequivalent complex formation of these cations with phosphate anions. Analysis of the effect of the studied media convection on the low-carbon steel electrode reactions allowed revealing some of their features. In a FePO4-containing H3PO4 solution, kinetically controlled partial reactions of iron anodic ionization and H+ cathodic reduction, as well as diffusion-controlled Fe(III) cation cathodic reduction, occur on the steel. The FePO4 accelerating effect on the steel corrosion in H3PO4 solution is due only to the Fe(III) reduction but does not affect the H+ reduction and the iron ionization. The value of the Fe(III)-cation diffusion coefficient in the studied corrosive medium was experimentally determined from the data of cyclic voltammetry of the Pt electrode therein and the results of the studying of the cathodic reaction of a steel disk electrode at different rotation velocities. The data on the low-carbon steel corrosion in the flow of the studied media, obtained from the metal samples mass loss, are in full agreement with the results of the study of the electrode partial reactions. An accelerating effect of FePO4 on the steel corrosion in H3PO4 solutions is observed. In this environment, steel corrosion is determined by the convective factor, which is typical of processes with diffusion control. The empirical dependence of the steel corrosion rate on the medium flow intensity is described by the linear dependence k = kst + λw1/2, where kst is the steel corrosion rate in a static medium, w is the rotation velocity of the propeller stirrer that creates the medium flow, λ is the empirical coefficient.

About the authors

Ya. G. Avdeev

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: avdeevavdeev@mail.ru
Moscow, Russia

A. V. Panova

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: avdeevavdeev@mail.ru
Moscow, Russia

T. E. Andreeva

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Author for correspondence.
Email: avdeevavdeev@mail.ru
Moscow, Russia

References

  1. Кузин, А.В., Горичев, И.Г., Шелонцев, В.А., Кузьменко, А.Н., Плахотная, О.Н., Овсянникова, Л.В. Роль комплексообразования при растворении оксидов железа в ортофосфорной кислоте. Вестн. Москов. ун-та. Сер. 2. Химия. 2021. Т. 62. № 6. С. 515. [Kuzin, A.V., Gorichev, I.G., Shelontsev, V.A., Kuzmenko, A.N., Plakhotnaia, O.N., and Ovsyannikova, L.V., The Role of a Complex Formation in the Dissolution of Iron Oxides in Orthophosphoric Acid, Moscow Univ. Chem. Bull., 2021, vol. 76, no. 6, p. 398.] https://doi.org/10.3103/S0027131421060055
  2. Продан, И.Е., Ещенко, Л.С., Печковский, В.В. Изучение кристаллизации фосфатов железа в системе железо(III)–фосфорная кислота–вода. Журн. неорган. химии. 1989. Т. 34. № 7. С. 1860. [Prodan, I.E., Yeshchenko, L.S., and Pechkovsky, V.V., Study of the crystallization of iron phosphates in the system iron(III)–phosphoric acid–water, Russ. J. Inorg. Chem., (in Russian), 1989, vol. 34, no. 7, p. 1860.]
  3. Barthel, J. and Deiss, R., The limits of the Pourbaix diagram in the interpretation of the kinetics of corrosion and cathodic protection of underground pipelines, Mater. and Corros., 2021, vol. 72, no. 3, p. 434. https://doi.org/10.1002/maco.202011977
  4. Huang, H.-H., The Eh-pH Diagram and Its Advances, Metals, 2016, vol. 6, no. 1, p. 23. https://doi.org/10.3390/met6010023
  5. Perry, S.C., Gateman, S.M., Stephens, L.I., Lacasse, R., Schulz, R., and Mauzeroll, J., Pourbaix Diagrams as a Simple Route to First Principles Corrosion Simulation, J. Electrochem. Soc., 2019, vol. 166, no. 11, p. C3186. https://doi.org/10.1149/2.0111911jes
  6. Pourbaix, M., Atlas of Electrochemical Equilibria in Aqueous Solutions, Second English Edition, Houston: National Association of Corrosion Engineers, 1974, p. 307–321.
  7. Wermink, W.N. and Versteeg, G.F., The Oxidation of Fe(II) in Acidic Sulfate Solutions with Air at Elevated Pressures. Part 1. Kinetics above 1 M H2SO4, Ind. Eng. Chem. Res., 2017, vol. 56, no. 14, p. 3775. https://doi.org/10.1021/acs.iecr.6b04606
  8. Wermink, W.N. and Versteeg, G.F., The Oxidation of Fe(II) in Acidic Sulfate Solutions with Air at Elevated Pressures. Part 2. Influence of H2SO4 and Fe(III), Ind. Eng. Chem. Res., 2017, vol. 56, no. 14, p. 3789. https://doi.org/10.1021/acs.iecr.6b04641
  9. Захаров, В.А., Сонгина, О.А., Бектурова, Г.Б. Реальные потенциалы окислительно-восстановительных систем (Обзор). Журн. аналит. химии. 1976. Т. 31. № 11. С. 2212. [Zakharov, V.A., Songina, O.A., and Bekturova, G.B., Real potentials of oxidation–reduction systems (Overview), J. Analyt. Chem., (in Russian), 1976, vol. 31, no. 11, p. 2212.]
  10. Кеше, Г. Коррозия металлов. Физико-химические принципы и актуальные проблемы. / Пер. с нем. под. ред. акад. Я.М. Колотыркина. М.: Металлургия, 1984. 400 с. [Kaesche, H., Die Korrosion der Metalle. Physikalischchemische Prinzipien und Aktuelle Probleme (in German), Berlin, Springer, 1979.]
  11. Антропов, Л.И. Теоретическая электрохимия. М.: Высш. школа, 1965. С. 348–380. [Antropov, L.I. Theoretical Electrochemistry (in Russian), Moscow, Vyssh. Shkola, 1965, p. 348–380.]
  12. Bockris, J.O’M., Drazic, D., and Despic, A.R., The electrode kinetics of the deposition and dissolution of iron, Electrochim. Acta, 1961, vol. 4, no. 2–4, p. 325. https://doi.org/10.1016/0013-4686(61)80026-1
  13. Катревич, А.Н., Флорианович, Г.М., Колотыркин, Я.М. Выяснение кинетических параметров реакции активного растворения железа в растворах фосфатов. Защита металлов. 1974. Т. 10. № 4. С. 369. [Katrevich, A.N., Florianovich, G.M., and Kolotyrkin, Ya.M., Elucidation of the kinetic parameters of the reaction of active dissolution of iron in phosphate solutions, Prot. Met., (in Russian), 1974, vol. 10, no. 4, p. 369.]
  14. Решетников, С.М., Макарова, Л.Л. Кинетика и механизм катодных и анодных процессов, определяющих кислотную коррозию металлов в области активного растворения. Окислительно-восстановительные и адсорбционные процессы на поверхности твердых металлов. Межвуз. сб. Ижевск: Удмурт. гос. ун-т, 1979. С. 25–49. [Reshetnikov, S.M. and Makarova, L.L., Kinetics and mechanism of cathodic and anodic processes that determine acid corrosion of metals in the area of active dissolution, Redox and adsorption processes on the surface of solid metals (in Russian), Udmurt State University, Izhevsk, 1979, p. 25–49.]
  15. Авдеев, Я.Г., Андреева, Т.Э. Особенности механизма коррозии низкоуглеродистых сталей в растворах кислот, содержащих соли Fe(III). Журн. физ. химии. 2021. Т. 95. № 6. С. 875. [Avdeev, Ya.G. and Andreeva, T.E. Characteristics of the Mechanism of Corrosion of Low-Carbon Steels in Acid Solutions Containing Fe(III) Salts, Russ. J. Phys. Chem. A., 2021, vol. 95, no. 6, p. 1128.] https://doi.org/10.1134/S003602442106002910.1134/S0036024421060029https://doi.org/10.31857/S0044453721060029
  16. Авдеев, Я.Г., Андреева, Т.Э. Особенности механизма коррозии сталей в ингибированных растворах кислот, содержащих соли железа(III). Журн. физ. химии. 2022. Т. 96. № 2. С. 281. DOI [Avdeev, Ya.G. and Andreeva, T.E., Mechanism of Steel Corrosion in Inhibited Acid Solutions Containing Iron(III) Salts, Russ. J. Phys. Chem. A., 2022, vol. 96, no. 2, p. 423.] https://doi.org/10.1134/S003602442202003010.1134/S0036024422020030https://doi.org/10.31857/S0044453722020030
  17. Avdeev, Ya.G., Andreeva, T.E., Panova, A.V., and Kuznetsov, Yu.I., Effect of anionic composition of solutions of mineral acids containing Fe(III) on their oxidizing properties, Int. J. Corros. Scale Inhib., 2019, vol. 8, no. 1, p. 139. https://doi.org/10.17675/2305-6894-2019-8-1-12
  18. Лурье, Ю.Ю. Справочник по аналитической химии. М.: Химия, 1971. С. 255–265. [Lurie, Yu.Yu., Spravochnik po analiticheskoy khimii (Handbook of Analytical Chemistry) (in Russian), Moscow, Khimiya, 1971, p. 255–265.]
  19. Kim, M.S., Kim, C.H., and Sohn, Y.S., Complex Formation Between Ferric Ion and Phosphoric Acid, J. Korean Chem. Soc., 1975, vol. 19, no. 5, p. 325.
  20. Филатова, Н.Л., Вендило, А.Г., Санду, Р.А. Исследование химических форм железа(III) в растворах ортофосфорной кислоты методом электронной адсорбционной спектроскопии. Журн. неорган. химии. 2012. Т. 57. № 9. С. 1355. [Filatova, L.N., Vendilo, A.G., and Sandu, R.A., Chemical Forms of Iron(III) in Solutions of Orthophosphoric Acid as Probed by Electronic Absorption Spectroscopy, Russ. J. Inorg. Chem., 2012, vol. 57, no. 9, p. 1272.] https://doi.org/10.1134/S0036023612090057
  21. Плэмбек, Дж. Электрохимические методы анализа. Пер. с англ. М.: Мир, 1985. 496 с. [Plambeck, J.A. Electroanalytical Chemistry: Basic Principles and Applications, N.Y., Wiley, 1982.]
  22. Belqat, B., Laghzizil, A., Elkacimi, K., Bouhaouss, A., and Belcadi, S., Fluoride effect on the electrochemical behaviour of the Fe(III)/Fe(II) system in H3PO4 + + H2O + HF, J. Fluorine Chem., 2000, vol. 105, p. 1. https://doi.org/10.1016/S0022-1139(00)00256-6
  23. Плесков, Ю.В., Филиновский, В.Ю. Вращающийся дисковый электрод. М: Наука, 1972. 344 с. [Pleskov, Yu.V. and Filinovskii, V.Yu., The Rotating Disk Electrode, Consultants Bureau, N.Y., 1976.]
  24. Du, C., Tan, Q., Yin, G., and Zhang, J., Rotating Disk Electrode Method, In Rotating Electrode Methods and Oxygen Reduction Electrocatalysts, Eds. W. Xing, G. Yin, J. Zhang, Elsevier B.V. All rights reserved, 2014, p. 171–198. https://doi.org/10.1016/B978-0-444-63278-4.00005-7
  25. Jia, Z., Yin, G., and Zhang, J., Rotating Ring-Disk Electrode Method, In Rotating Electrode Methods and Oxygen Reduction Electrocatalysts, Eds. W. Xing, G. Yin, J. Zhang, Elsevier B.V. All rights reserved, 2014, p. 199–229. https://doi.org/10.1016/B978-0-444-63278-4.00006-9
  26. Xing, W., Yin, M., Lv, Q., Hu, Y., Liu, C., and Zhang, J., Oxygen solubility, diffusion coefficient, and solution viscosity, In Rotating Electrode Methods and Oxygen Reduction Electrocatalysts, Eds. W. Xing, G. Yin, J. Zhang, Elsevier B.V. All rights reserved, 2014, p. 1–31. https://doi.org/10.1016/B978-0-444-63278-4.00001-X

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (197KB)
3.

Download (38KB)
4.

Download (63KB)
5.

Download (90KB)
6.

Download (89KB)
7.

Download (197KB)

Copyright (c) 2023 Я.Г. Авдеев, А.В. Панова, Т.Э. Андреева

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies