Oxygen-Ionic Conductivity in Isovalent-Doped Layered BaLaInO4-Based Perovskites

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The oxygen-ionic conductivity of isovalent-doped complex oxides characterized by the Ruddlesden–Popper structure is studied. The BaLa0.9Nd0.1InO4 sample was obtained for the first time by substitution in the La sublattice, and its transport properties are studied. A comparing of the results with the data for samples obtained earlier by isovalent substitution in the In-sublattice of BaLaInO4 is presented. The introducing of a dopant is shown to lead to increase in the contribution from oxygen-ionic conductivity and also in the total conductivity by ~2 orders of magnitude.

About the authors

A. O. Bedarkova

Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Science; Ural Federal University named after the first President of Russia B.N. Eltsin

Email: a.o.galisheva@urfu.ru
Yekaterinburg, Russia; Yekaterinburg, Russia

P. V. Cheremisina

Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Science; Ural Federal University named after the first President of Russia B.N. Eltsin

Email: a.o.galisheva@urfu.ru
Yekaterinburg, Russia; Yekaterinburg, Russia

E. V. Abakumova

Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Science; Ural Federal University named after the first President of Russia B.N. Eltsin

Email: a.o.galisheva@urfu.ru
Yekaterinburg, Russia; Yekaterinburg, Russia

I. S. Fedorova

Ural Federal University named after the first President of Russia B.N. Eltsin

Email: a.o.galisheva@urfu.ru
Yekaterinburg, Russia

K. G. Davletbaev

Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Science; Ural Federal University named after the first President of Russia B.N. Eltsin

Email: a.o.galisheva@urfu.ru
Yekaterinburg, Russia; Yekaterinburg, Russia

N. A. Tarasova

Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Science; Ural Federal University named after the first President of Russia B.N. Eltsin

Email: a.o.galisheva@urfu.ru
Yekaterinburg, Russia; Yekaterinburg, Russia

I. E. Animitsa

Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Science; Ural Federal University named after the first President of Russia B.N. Eltsin

Author for correspondence.
Email: a.o.galisheva@urfu.ru
Yekaterinburg, Russia; Yekaterinburg, Russia

References

  1. Tarutin, A., Gorshkov, Yu., Bainov, A., Vdovin, G., Vylkov, A., Lyagaeva, J., and Medvedev, D., Barium-doped nickelates Nd2 – xBaxNiO4 + δ as promising electrode materials for protonic ceramic electrochemical cells, Ceramics Int., 2020, vol. 46, p. 24355.
  2. Tarutin, A., Lyagaeva, J., Farlenkov, A., Plaksin, S., Vdovin, G., Demin, A., and Medvedev, D., A Reversible Protonic Ceramic Cell with Symmetrically Designed Pr2NiO4 + δ-Based Electrodes: Fabrication and Electrochemical Features, Materials, 2019, vol. 12, p. 118.
  3. Bassat, J.M., Burriel, M., Wahyudi, O., Castaing, R., Ceretti, M., Veber, P., Weill, I., Villesuzanne, A., Grenier, J.C., and Paulus, W., Anisotropic oxygen diffusion properties in Pr2NiO4 + δ and Nd2NiO4 + δ single crystals, J. Phys. Chem. C, 2013, vol. 117, p. 26466.
  4. Lee, D., Grimaud, A., Crumlin, E.J., Mezghani, K., Habib, M.A., Feng, Z.X., Hong, W.T., Biegalski, M.D., Christen, H.M., and Shao-Horn, Y., Strain influence on the oxygen electrocatalysis of the (100)-oriented epitaxial La2NiO4 + δ thin films at elevated temperatures, J. Phys. Chem. C, 2013, vol. 117, p. 18789.
  5. Boehm, E., Bassat, J.M., Dordor, P., Mauvy, F., Grenier, J.C., and Stevens, P., Oxygen diffusion and transport properties in non-stoichiometric Ln2 – xNiO4 + δ oxides, Solid State Ionics, 2005, vol. 176, p. 2717.
  6. Troncoso, L., Alonso, J.A., and Aguadero, A., Low activation energies for interstitial oxygen conduction in the layered perovskites La1 + xSr1 – xInO4 + δ, J. Mater. Chem. A, 2015, vol. 3, p. 17797.
  7. Troncoso, L., Mariño, C., Arce, M.D., and Alonso, J.A., Dual Oxygen Defects in Layered La1.2Sr0.8 – xBaxInO4 + δ (x = 0.2, 0.3) Oxide-Ion Conductors: A Neutron Diffraction Study, Materials, 2019, vol. 12, p. 1624.
  8. Kato, S., Ogasawara, M., Sugai, M., and Nakata, Sh., Synthesis and oxide ion conductivity of new layered perovskite La1 – xSr1 + xInO4 – d, Solid State Ionics, 2002, vol. 149, p. 53.
  9. Troncoso, L., Alonso, J.A., Fernández-Díaz, M.T., and Aguadero, A., Introduction of interstitial oxygen atoms in the layered perovskite LaSrIn1 – xBxO4 + δ system (B = Zr, Ti), Solid State Ionics, 2015, vol. 282, p. 82.
  10. Troncoso, L., Arce, M.D., Fernández-Díaz, M.T., Mogni, L.V., and Alonso, J.A., Water insertion and combined interstitial-vacancy oxygen conduction in the layered perovskites La1.2Sr0.8 – xBaxInO4 + d, New J. Chem., 2019, vol. 43, p. 6087.
  11. Fujii, K., Esaki, Y., Omoto, K., Yashima, M., Hoshikawa, A., Ishigaki, T., and Hester, J.R., New Perovskite-Related Structure Family of Oxide-Ion Conducting Materials NdBaInO4, Chem. Mater., 2014, vol. 26, p. 2488.
  12. Fujii, K., Shiraiwa, M., and Esaki, Y., Improved oxide-ion conductivity of NdBaInO4 by Sr doping, J. Mater. Chem. A, 2015, vol. 3, p. 11985.
  13. Ishihara, T., Yan, Yu, Sakai, T., and Ida, Sh., Oxide ion conductivity in doped NdBaInO4, Solid State Ionics, 2016, vol. 288, p. 262.
  14. Yang, X., Liu, Sh., Lu, F., Xu, J., and Kuang, X., Acceptor Doping and Oxygen Vacancy Migration in Layered Perovskite NdBaInO4‑Based Mixed Conductors, J. Phys. Chem. C, 2016, vol. 120, p. 6416.
  15. Fujii, K. and Yashima, M., Discovery and development of BaNdInO4 – A brief review, J. Ceram. Soc. JAPAN, 2018, vol. 126, p. 852.
  16. Zhou, Yu, Shiraiwa, M., Nagao, M., Fujii, K., Tanaka, I., Yashima, M., Baque, L., Basbus, J.F., Mogni, L.V., and Skinner, S.J., Protonic Conduction in the BaNdInO4 Structure Achieved by Acceptor Doping, Chem. Mater., 2021, vol. 33, p. 2139.
  17. Korona, D.V., Obrubova, A.V., Kozlyuk, A.O., and Animitsa, I.E., Hydration and Proton Transport in BaCaxLa1 – xInO4 – 0.5x (x = 0.1 and 0.2) Phases with Layered Structure, Russ. J. Phys. Chem. A, 2018, vol. 92, p. 1727.
  18. Tarasova, N., Animitsa, I., Galisheva, A., and Korona, D., Incorporation and Conduction of Protons in Ca, Sr, Ba-Doped BaLaInO4 with Ruddlesden–Popper Structure, Materials, 2019, vol. 12, p. 1668.
  19. Tarasova, N., Animitsa, I., and Galisheva, A., Electrical properties of new protonic conductors Ba1 + xLa1 – xInO4 – 0.5x with Ruddlesden–Popper structure, J. Solid State Electrochem., 2020, vol. 24, p. 1497.
  20. Tarasova, N., Galisheva, A., and Animitsa, I., Improvement of oxygen-ionic and protonic conductivity of BaLaInO4 through Ti doping, Ionics, 2020, vol. 26, p. 5075.
  21. Tarasova, N., Animitsa, I., and Galisheva, A., Effect of acceptor and donor doping on the state of protons in block-layered structures based on BaLaInO4, Solid State Comm., 2021, vol. 323, p. 14093.
  22. Tarasova, N.A., Galisheva, A.O., Animitsa, I.E., and Lebedeva, E.L., Oxygen-ion and proton transport in Sc-doped layered perovskite BaLaInO4, Russ. J. Electrochem., 2021, vol. 57, p. 1008.
  23. Tarasova, N., Galisheva, A., Animitsa, I., Anokhina, I., Gilev, A., and Cheremisina, P., Novel mid-temperature Y3+ → In3+ doped proton conductors based on the layered perovskite BaLaInO4, Ceramics Int., vol. 48, p. 15677.
  24. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst., 1976, vol. A32, p. 751.
  25. Tarasova, N. and Animitsa, I., Materials AIILnInO4 with Ruddlesden–Popper structure for electrochemical applications: relationship between ion (oxygen-ion, proton) conductivity, water uptake and structural changes, Materials, 2022, vol. 15, p. 114.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (51KB)
3.

Download (1MB)
4.

Download (119KB)
5.

Download (143KB)
6.

Download (179KB)
7.

Download (48KB)

Copyright (c) 2023 А.О. Бедарькова, П.В. Черемисина, Е.В. Абакумова, И.С. Федорова, К.Г. Давлетбаев, Н.А. Тарасова, И.Е. Анимица

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».