The Electrophoretic Deposition of Lithium Cobaltate Nanosized Particles on the Surface of Metals and Electroconductive Oxide Ceramics

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The deposition of LiCoO2 nanosized particles synthesized in LiCl–CoCl2 melts on the surface of nickel foil, copper, chrome–cobalt alloy, and platinum mesh in aqueous solutions of lithium chloride at the room temperature as well as on the surface of the electron-conducting La0.6Sr0.4MnO3 oxide ceramics in chloride melt at temperature of ca. 700°C is studied. The methods of vibrational spectroscopy, X-ray photoelectron spectroscopy, ellipsometry, and scanning electron microscopy have revealed the features of the chemical composition, structure, and morphology of the precipitates obtained.

About the authors

V. A. Khokhlov

Institute of High-Temperature Electrochemistry

Email: vladkhokh@mail.ru
Yekaterinburg, Russia

D. V. Modenov

Institute of High-Temperature Electrochemistry

Email: vladkhokh@mail.ru
Yekaterinburg, Russia

V. N. Dokutovich

Institute of High-Temperature Electrochemistry

Email: vladkhokh@mail.ru
Yekaterinburg, Russia

E. G. Vovkotrub

Institute of High-Temperature Electrochemistry

Email: vladkhokh@mail.ru
Yekaterinburg, Russia

V. A. Kochedykov

Institute of High-Temperature Electrochemistry

Email: vladkhokh@mail.ru
Yekaterinburg, Russia

L. A. Akashev

Institute of Solid State Chemistry

Email: vladkhokh@mail.ru
Yekaterinburg, Russia

V. B. Malkov

Institute of High-Temperature Electrochemistry

Email: vladkhokh@mail.ru
Yekaterinburg, Russia

A. A. Pankratov

Institute of High-Temperature Electrochemistry

Email: vladkhokh@mail.ru
Yekaterinburg, Russia

A. V. Fetisov

Institute of Metallurgy

Author for correspondence.
Email: vladkhokh@mail.ru
Yekaterinburg, Russia

References

  1. Махонина, Е.В., Первов, В.С., Дубасова, В.С. Оксидные материалы положительного электрода литий-ионных аккумуляторов. Успехи химии. 2004. Т. 73. С. 1075. [Makhonina, E.V., Pervov, V.S., and Dubasova, V.S., Oxide materials as positive electrodes of lithium-ion batteries, Russ. Chem. Rev., 2004, vol. 73, p. 991.]
  2. Bensalah, N. and Dawood, H., Review on Synthesis, Characterizations, and Electrochemical Properties of Cathode Materials for Lithium-Ion Batteries, J. Material Sci. Eng., 2016, vol. 5, p. 258.
  3. Pang, H., Cao, X., Zhu, L., and Zheng, M., Synthesis of Functional Nanomaterials for Electrochemical Energy Storage, Singapore: Springer Nature Singapore Pte Ltd., 2020. 222 p.
  4. Lithium-ion Batteries – Thin Film for Energy Materials and Devices, Eds. Mitsunobu Sato, Li Lu, and Hiroki Nagai, London: InTechOpen Limited, 2020. 132 p.
  5. Wu, J., Yang, S., Cai, W., Bi, Z., Syang, G., and Yao, J., Multi-characterization of LiCoO2 cathode films using advanced AFM-based techniques with high resolution, Scientific Reports, 2017, vol. 7, 11164.
  6. Ohta, N., Takada, K., Sakaguchi, I., Zhang, L., Ma, R., Fukuda, K., Osada, M., and Sasaki, T., LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries, Electrochem. Comm., 2007, vol. 9, p. 1486.
  7. Yu, H., Holtz, M.E., Gong, Y., Pearson, J., Ren, Y., Herzing, A.A., Zhang, X., and Takeuchi, I., Nonvolatile multilevel switching in artificial synaptic transistors based on epitaxial LiCoO2 thin films, Phys. Rev. Materials, 2021, vol. 5, 115401.
  8. Kawashima, K., Ohnishi, T., and Takada, K., High-Rate Capability of LiCoO2 Cathodes, ACS Appl. Energy Mater., 2020, vol. 3, no. 12, p. 11803.
  9. Orikasa, Y., Takamatsu, D., Yamamoto, K., Koyama, Y., Mori, S., Masese, T., Mori, T., Minato, T., Tanida, H., Uruga, T., Ogumi, Z., and Uchimoto, Y., Origin of the Surface Coating Effect of MgO on LiCoO2 to Improve the Interfacial Reaction between Electrode and Electrolyte, Adv. Mat. Interfaces, 2014, vol. 1, no. 9, 00195.
  10. Inamoto, J., Fukutsuka, T., Miyazaki, K., and Abe, T., Insight into the state of the ZrO2 coating on a LiCoO2 thin-film electrode using the ferrocene redox reaction, J. Appl. Electrochem., 2017, vol. 47, no. 11, p. 1.
  11. Oh, Y., Ahn, D., Nam, S., and Park, B., The effect of Al2O3-coating coverage on the electrochemical properties in LiCoO2 thin films, J. Solid State Electrochem., 2009, vol. 14, no. 7, p. 1235.
  12. Yan, B., Liu, J., Song, B., Xiao, P., and Lu, L., Li-rich Thin Film Cathode Prepared by Pulsed Laser Deposition, Scientific Reports, 2013, vol. 3, 3332.
  13. Ohnishi, T., Hang, B.T., Xu, X., Osada, M., and Takada, K., Quality control of epitaxial LiCoO2 thin films grown by pulsed laser deposition, J. Mater. Res., 2010, vol. 25, no. 10, p. 1886.
  14. Iriyama, Y., Inaba, M., Abe, T., and Ogumi Z., Preparation of c-axis oriented thin films of LiCoO2 by pulsed laser deposition and their electrochemical properties, J. Power Sources, 2001, vol. 94, p. 175.
  15. Kosuri, Y.R., Penki, T.R., Nookala, M., Morgen, P., and Gowravaram, M.R., Investigations on Sputter Deposited LiCoO2 Thin Films from Powder Target, Adv. Mat. Lett., 2013, vol. 4, no. 8, p. 615.
  16. Yoon, M., Lee, S., Lee, D., Kim, J., and Moon, J., All-solid-state thin film battery based on well-aligned slanted LiCoO2 nanowires fabricated by glancing angle deposition, Appl. Surf. Sci., 2017, vol. 412, p. 537.
  17. Julien, C.M., Mauger, A., and Hussain, O.M., Sputtered LiCoO2 Cathode Materials for All-Solid-State Thin-Film Lithium Microbatteries, Materials, 2019, vol. 12, no. 17, 2687.
  18. Chen, C., Kelder, E.M., van der Put, P.J.J.M., and Schoonman, J., Morphology control of thin LiCoO2 films fabricated using the electrostatic spray deposition (ESD) technique, J. Mater. Chem., 1996, vol. 6, p. 765.
  19. Taniguchi, I. and Nishino, T., Surface Morphology and Electrochemical Properties of LiCoO2 Thin Films Synthesized by Electrostatic Spray Deposition Method, Kagaku Kogaku Ronbunshu, 2003, vol. 29, no. 2, p. 226.
  20. Donders, M.E., ArnoldBik, W.M., Knoops, H.C.M., Kessels, W.M.M., and Notten, P.H.L., Atomic layer deposition of LiCoO2 thin film electrodes for all-solid-state Li-ion micro-batteries. J. Electrochem. Soc., 2013, vol. 160, no. 5, p. A3066.
  21. Yuji, H.Y. and Goto, T., Orientation and Morphology of LiCoO2 Prepared by Chemical Vapor Deposition on Al2O3 Single Crystal, Key Eng. Mater., 2012, vol. 508, p. 300.
  22. Maruyama, S., Kubokawa, O., Nanbu, K., Fujimoto, K., and Matsumoto, Y., Combinatorial Synthesis of Epitaxial LiCoO2 Thin Films on SrTiO3(001) via On-Substrate Sintering of Li2CO3 and CoO by Pulsed Laser Deposition, ACS Comb. Sci., 2016, vol. 18, no. 6, p. 343.
  23. Goto, A., Hamagami, J.I., Kanamura, K., and Umegaki, T., Electrophoretic Deposition (EPD), LiCoO2, Lithium-Ion Battery, Key Eng. Mater., 2000, vols. 181–182, p. 159.
  24. Kanamura, K., Goto, A., Rho, Y.H., and Umegaki, T., Electrophoretic fabrication of LiCoO2 positive electrodes for rechargeable lithium batteries, J. Power Sources, 2001, vol. 97, p. 294.
  25. Esper, J.D., Helmer, A., Wu, Y., Bachmann, J., and Klupp Taylor, R.N., Electrophoretic Deposition of Out-of-Plane Oriented Active Material for Lithium-Ion Batteries, Energy Technol., 2021, vol. 9, no. 4, 2000936.
  26. Miyazaki, H., Mimaru, Y., Makinose, Y., Tsuji, T., Yamada, H., and Mutai, T., Improvement of the Cycle Property of Binder-Free LiCoO2 Positive Electrode Film Deposited via the Pulsed Electrophoretic Deposition, Mater. Trans., 2019, vol. 60, no. 12, p. 2576.
  27. Caballero, A., Herna’n, L., Melero, M., Morales, J., Moreno, R., and Ferrari B., LiNi0.5Mn1.5O4 thick-film electrodes prepared by electrophoretic deposition for use in high voltage lithium-ion batteries, J. Power Sources, 2006, vol. 158, p. 583.
  28. Sarkar, P. and Nicholson, P.S., Electrophoretic Deposition (EPD): Mechanisms, Kinetics, and Application to Ceramics, J. Amer. Ceram. Soc., 1996, vol. 79, no. 8, p. 1987.
  29. Van der Biest, O. and Vandeperre, L., Electrophoretic Deposition of Materials, Ann. Rev. Mater. Sci., 1999, vol. 29, p. 327.
  30. Besra, L. and Liu, M., A review on fundamentals and applications of electrophoretic deposition (EPD), Prog. Mater. Sci., 2007, vol. 52, p. 1.
  31. Corni, I., Ryan, M.P., and Boccaccin, A.R., Electrophoretic deposition: From traditional ceramics to nanotechnology, J. Eur. Ceram. Soc., 2008, vol. 28, p. 1353.
  32. Hong, Y.S., Han, C.H., and Kim, K., Preparation of polycrystalline HT-LiCoO2 using molten salt synthesis method at 280°C, Chem. Lett., 2000, vol. 29, no. 12, p. 1384.
  33. Liang, H., Qiu, X., Zhang, S., He, Z., Zhu, W., and Chen, L., High performance lithium cobalt oxides prepared in molten KCl for rechargeable lithium-ion batteries, Electrochem. Commun., 2004, vol. 6, no. 5, p. 505.
  34. Liang, H., Qiu, X., Chen, H., He, Z., Zhu, W., and Chen, L., Analysis of high rate performance of nanoparticled lithium cobalt oxides prepared in molten KNO3 for rechargeable lithium-ion batteries, Electrochem. Commun. 2004, vol. 6, p. 789.
  35. Tan, K.S., Reddy, M.V., Subba Rao, G.V., and Chowdari, B.V.R., High-performance LiCoO2 by molten salt (LiNO3:LiCl) synthesis for Li-ion batteries, J. Power Sources, 2005, vol. 147, nos. 1–2, p. 241.
  36. Fu, J., Bai, Y., Liu, C., Yu, H., and Mo, Y., Physical characteristic study of LiCoO2 prepared by molten salt synthesis method in 550–800°C, Mater. Chem. Phys., 2009, vol. 115, no. 1, p. 105.
  37. Kim, J.H., Myung, S.T., and Sun, Y.K., Molten salt synthesis of LiNi0.5Mn1.5O4 spinel for 5 V class cathode material of Li-ion secondary battery, Electrochim. Acta, 2004, vol. 49, no. 2, p. 219.
  38. Kumagai, N., Oshitari, S., Komaba, S., and Kadoma, Y., Synthesis of hollandite-type LiyMn1 – xCoxO2 (x = 0–0.15) by Li+ ion-exchange in molten salt and the electrochemical property for rechargeable lithium battery electrodes, J. Power Sources, 2007, vol. 174, no 2, p. 932.
  39. Han, C.-H., Hong, Y.-S., Park, C.M., and Kim, K., Synthesis and electrochemical properties of lithium cobalt oxides prepared by molten-salt synthesis using the eutectic mixture of LiCl–Li2CO3, J. Power Sources, 2001, vol. 192, p. 95.
  40. Han, C.-H., Hong, Y.-S., Kang, E.-J., Shin, J.-S., and Kim, K., Synthesis and Electrochemical Properties of HT-LiCo0.8Ni0.2O2 Prepared by Molten Salt Synthesis Method using 0.59LiNO3–0.41LiOH System, Korean J. Chem. Eng., 2001, vol. 18, no. 5, p. 765.
  41. Khokhlov, V., Modenov, D., Dokutovich, V., Kochedykov, V., Zakir’yanova, I., Vovkotrub, E., and Beketov, I., Lithium oxide solution in chloride melts as a medium to prepare LiCoO2 nanoparticles, MRS Commun., 2014, vol. 4, p. 15.
  42. Hara, K., Yano, T., Suzuki, K., Hirayama, M., Haya-shi, T., Kanno, R., and Hara, M., Raman Imaging Analysis of Local Crystal Structures in LiCoO2 Thin Films Calcined at Different Temperatures, Anal. Sci., 2017, vol. 33, p. 853.
  43. Freitas, B.G.A., Siqueira, Jr. J.M., da Costa, L.M., Ferreira, G.B., and Resende, J.A.L.C., Synthesis and Characterization of LiCoO2 from Different Precursors by Sol–Gel Method, J. Brazil. Chem. Soc., 2017, vol. 28, no. 11, p. 2254.
  44. Julien, C., Local cationic environment in lithium nickel–cobalt oxides used as cathode materials for lithium batteries, Solid State Ionics, 2000, vol. 136–137, p. 887.
  45. Rao, M.C. and Hussain, O.M., Spectroscopic investigations on tetravalent doped LiCoO2 thin film cathodes, Eur. Phys. J.- Appl. Phys., 2009, vol. 48, 20503.
  46. Yang, W.-D., Hsieh, C.-Y., Chuang, H.-Jan., and Chen, Y.-S., Preparation and characterization of nanometric-sized LiCoO2 cathode materials for lithium batteries by a novel sol–gel method, Ceram. Int., 2010, vol. 36, p. 135.
  47. He, Z. and Alexandridis, P., Nanoparticles in ionic liquids: interactions and organization, Phys. Chem. Chem. Phys., 2015, vol. 17, 18238.
  48. Xu, Y., Ding, L., Zhong, T., Han, X., Jiao, L., Yuan, H., and Wang, Y., Novel application of LiCoO2 as a high-performance candidate material for supercapacitor, J. Energy Chem., 2015, vol. 24, p. 193.
  49. Mironova-Ulmane, N., Kuzmin, A., Sildos, I., Puust, L., and Grabis, J., Magnon and Phonon Excitations in Nanosized NiO, Latvian J. Phys. Tech. Sci., 2019, vol. 56, no. 2, p. 61.
  50. Debbichi, L., Marco de Lucas, M.C., Pierson, J.F., and Krüger, P., Vibrational Properties of CuO and Cu4O3 from First-Principles Calculations, and Raman and Infrared Spectroscopy, J. Phys. Chem. C, 2012, vol. 116, p. 10232
  51. Zoolfakar, A.S., Rani, R.A., Morfa, A.J., O’Mullane, A.P., and Kalantar-Zadeh, K., Nanostructured copper oxide semiconductors: A perspective on materials, synthesis methods and applications, J. Mat. Chem. C, 2014, vol. 2, p. 27.
  52. Graham, G.W., Weber, W.H., McBride, J.R., and Peters, C.R., Raman Investigation of Simple and Complex Oxides of Platinum, J. Raman Spectrosc., 1991, vol. 22, p. 1
  53. Hadjiev, V.G., Iliev, M.N., and Vergilov, I.V., The Raman spectra of Co3O4, J. Phys. C: Solid State, 1988, vol. 21, p. L199.
  54. Azzam, R.M.A. and Bashara, N.M., Ellipsometry and Polarized Light, Amsterdam; N.Y.: North-Holland, 1987. 539 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (57KB)
3.

Download (131KB)
4.

Download (184KB)
5.

Download (399KB)
6.

Download (127KB)
7.

Download (144KB)
8.

Download (82KB)
9.

Download (77KB)
10.

Download (207KB)
11.

Download (792KB)
12.

Download (29KB)
13.

Download (127KB)
14.

Download (1017KB)

Copyright (c) 2023 В.А. Хохлов, Д.В. Моденов, В.Н. Докутович, Э.Г. Вовкотруб, В.А. Кочедыков, Л.А. Акашев, В.Б. Малков, А.А. Панкратов, А.В. Фетисов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies