Specific Features of Phase Formation and Properties of Compounds La2W1 + xO6 + 3x (x ~ 0; 0.11–0.22)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The hexagonal solid solution La2W1 + xO6 + 3x (x ~ 0.11) and the orthorhombic low-temperature phase β-La2WO6 (La2W1 + xO6 + 3x (x = 0)) are synthesized by the methods of preliminary mechanical activation of oxides followed by high-temperature synthesis at 1400°С, 4 h. In addition, by using the method of crystallization from solution, a single crystal of the La2W1 + xO6 + 3x (x ~ 0.22) composition isostructural to La2W1 + xO6 + 3x (x ~ 0.11) is grown. Both ceramics and the single crystal are studied by the methods of Raman spectroscopy, thermal analysis, and thermogravimetry. Their conductivity is studied by impedance spectroscopy in dry and humid air. The hexagonal single crystal La2W1 + xO6 + 3x (x ~ 0.22) demonstrates strong luminescence in the IR region, in contrast to the hexagonal ceramics La2W1 + xO6 + 3x (x ~ 0.11) and the β-La2WO6 ceramics with the orthorhombic structure. The polycrystalline La2W1 + xO6 + 3x (x ~ 0.11) ceramics is found to be more stable under redox conditions as compared with the single crystal. The conductivity of the hexagonal single crystal La2W1 + xO6 + 3x (x ~ 0.22) is of the oxygen-ionic nature and lower than the conductivity of ceramics La2W1 + xO6 + 3x (x ~ 0.11) due to its perfect structure. The contribution of the protonic component of conductivity is absent for both the hexagonal solid solution La2W1 + xO6 + 3x (x ~ 0.11) and the single crystal La2W1 + xO6 + 3x (x ~ 0.22), their conductivity being of the purely ionic nature with the close values of activation energy (0.89 and 1.08 eV, respectively). The synthesized β-La2WO6 ceramics demonstrates a small contribution of the protonic conductivity in humid air equal to ~1 × 10–6 S/cm at 600°С, which is close to the conductivity of the earlier studied strontium-doped solid solution La1.96Sr0.04WO6 – δ based on β-La2WO6.

About the authors

A. V. Shlyakhtina

Semenov Institute of Chemical Physics, Russian Academy of Science

Email: annash@chph.ras.ru
Moscow, Russia

N. V. Lyskov

Institute of Problems of Chemical Physics, Russian Academy of Sciences; National Research University Higher School of Economics

Email: annash@chph.ras.ru
Chernogolovka, Russia; Moscow, Russia

I. V. Kolbanev

Semenov Institute of Chemical Physics, Russian Academy of Science

Email: annash@chph.ras.ru
Moscow, Russia

G. A. Vorob’eva

Semenov Institute of Chemical Physics, Russian Academy of Science

Email: annash@chph.ras.ru
Moscow, Russia

A. N. Shchegolikhin

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: annash@chph.ras.ru
Moscow, Russia

V. I. Voronkova

Moscow State University

Author for correspondence.
Email: annash@chph.ras.ru
Moscow, Russia

References

  1. Yoshimura, M., Sibeeude, F., Ruanet, A., and Foex, M., Polymorphism of R2O3·WO3 (R = rare-earth) compounds at high temperature, Rev. Int. Htes et Refract., 1971, vol. 12. p. 215.
  2. Shimura, T., Fujimoto, S., and Iwahara, H., Proton Conduction in Non-Perovskite-Type Oxides at Elevated Temperature, Solid State Ionics, 2001, vol. 143, p. 117.
  3. Blasse, G.J., Inorg. Nucl. Chem., 1996, vol. 28, p. 1488.
  4. Brixner, L.H., Sleight, A.W., and Licis, M.S., Ln2MoO6-type rare-earth molibdates-preparation and lattice parameters, J. Solid State Chem., 1972, vol. 5. p. 186.
  5. Yoshimura, M. and Rouanet, A., High temperature phase relations in the system La2O3–WO3, Mater. Res. Bull., 1976, vol. 11, p. 151. https://doi.org/10.1016/j.phpro.2009.07.045
  6. Chambrier, M.H., Kodjikian, S., Ibberson, R.M., and Goutenoire, F., Ab-initio structure determination of beta-La2WO6, J. Solid State Chem., 2009, vol. 182, p. 209.
  7. Allix, M., Chambrier, M.-H., Veron, E., Porcher, F., Suchomel, M., and Goutenoire F., Synthesis and Structure Determination of the High Temperature Form of La2WO6, Cryst. Growth Des., 2011, vol. 11, p. 5105. https://doi.org/10.1021/cg201010y
  8. Иванова, M.M., Балагина, Ж.M., Роде, E.Я. Диаграмма состояния системы La2O3–WO3, Неорган. материалы. 1970. Т. 6. С. 914.
  9. Яновский, В.К., Воронкова, В.И. Кристаллография и свойства оксивольфраматов лантана La2WO6. Кристаллография. 1975. Т. 20. С. 579.
  10. Kovalevsky, A.V., Kharton, V.V., and Naumovich, E.N., Oxygen ion conductivity of hexagonal La2W1.25O6.75, Mater. Lett., 1999, vol. 38, p. 300.
  11. Chambrier, M.-H., Ball, A.L., Kodjikian, S., Suard, E., and Goutenoire, F., Structure Determination of La18W10O57, Inorg. Chem., 2009, vol. 48, p. 6566.
  12. Magraso, A. and Haugsrud, R., Effects of the La/W ratio and doping on the structure, defect structure, stability and functional properties of proton-conducting lanthanum tungstate La28 – xW4 + xO54 + δ. A review, J. Mater. Chem. A, 2014, vol. 2, p. 12630.
  13. Vigen, C.K., Pan, J., and Haugsrud, R., Defects and Transport in Acceptor Doped La2WO6 and Nd1.2Lu0.8WO6, ECS J. Solid State Sci. Technol., 2013, vol. 2(12), is. 243–248, p. 2162.
  14. Сорокин, Н.И., Гребенев, В.В., Каримов, Д.Н. Анизотропия анионной проводимости в монокристаллах суперионного проводника CeF3. Физика твердого тела. 2021. Т. 63. № 9. С. 1376. DOI [Sorokin, N.I., Grebenev, V.V., and Karimov, D.N., Anisotropy of Anionic Conductivity in Single Crystals of CeF3 Superionic Conductor, Phys. Solid State (in Russian), 2021, vol. 63, p. 1541.]
  15. Kolbanev, I.V., Shlyakhtina, A.V., Degtyarev, E.N., Konysheva, E.Yu., Lyskov, N.V., Stolbov, D.N., and Streletskii, A.N., Room-temperature mechanochemical synthesis of RE molybdates: impact of structural similarity and basicity of oxides, J. Amer. Cer. Soc., 2021, vol. 104, 5698. https://doi.org/10.1111/jace.17939
  16. Du, P. and Yu, J.S., Eu3+-activated La2MoO6–La2WO6 red-emitting phosphors with ultrabroad excitation band for white light-emitting diodes, Sci. Rep., 2017, vol. 7, p. 11953. https://doi.org/10.1038/s41598-017-12161-5
  17. Ishigaki, T., Matsushita, N., Yoshimura, M., Uematsu, K., Toda, K., and Sato, M., Melt synthesis of oxide red phosphors La2WO6:Eu3+, Phys. Procedia, 2009, vol. 2, p. 587. https://doi.org/10.1016/j.phpro.2009.07.045
  18. Aronov, M.N., Laboratory vibrating eccentric mill, Instruments and Experimental Technique, 1959, vol. 1, p. 153.
  19. Aronov, M.N. and Morgulis, L.M., Certificate of authorship No. 113794.
  20. Program ZView (Scribner Associates Inc., USA).
  21. Liu, B., Song, K.X., Vibrational spectroscopy and microwave dielectric properties of two novel Ca3Ln2W2O12 (Ln = La, Sm) tungstate ceramics, Mater. Res. Bull., 2021, vol. 133, 111022. https://doi.org/10.1016/j.materresbull.2020.111022
  22. Maczka, M., Hanuza, J., Paraguassu, W., Filho, A.G.S., Freire, P.T.C., Filho, J.M., Phonons in ferroelectric Bi2WO6: Raman and infrared spectra and lattice dynamics, Appl. Phys. Lett. , 2008, vol. 92, 112911. https://doi.org/10.1063/1.2896312
  23. Poirier, G., Messaddeq, Y., Ribeiro, S.J.L., Poulain, M. Structural study of tungstate fluorophosphate glasses by Raman and X-ray absorption spectroscopy, J. Solid State Chem., 2005, vol. 178, p. 1533. https://doi.org/10.1016/j.jssc.2004.10.032
  24. Li, Y., Liu, J., Huang, X., Yu, J., Carbon-modified Bi2WO6 nanostructures with improved photocatalytic activity under visible light, Dalton Trans., 2010, vol. 39, p. 3420.
  25. Hager, I.Z., El-mallawany, R., Poulain, M., Infrared and Raman spectra of new molybdenum and tungsten oxyfluoride glasses, J. Mater. Sci., 1999, vol. 34, p. 5163.
  26. Shlyakhtina, A.V., Lyskov, N.V., Kolbanev, I.V., Shchegolikhin, A.N., Karyagina, O.K., Shcherbakova, L.G., Key trends in the proton conductivity of Ln6 – xMoO12 – δ (Ln = La, Nd, Sm, Gd–Yb; x = 0, 0.5, 0.6, 0.7, 1) rare-earth molybdates, Intern. J. Hydr. Energy, 2021, vol. 46, p. 16989. https://doi.org/10.1016/j.ijhydene.2021.01.129
  27. Escolastico, S., Seegerm J., Roitsch, S., Ivanova, M., Meulenberg, W.A., Serra, J. Enhanced H-2 separation through mixed proton-electron conducting membranes based on La5.5W0.8M0.2O11.25 – δ. Chem. Sus. Chem., 2013, vol. 6, p.1523. https://doi.org/10.1002/cssc.201300091
  28. Jbeli, R., Boukhachem, A., Saadallah, F., Alleg, S., Amlouk, M., Ezzaouïa, H., Synthesis and physical properties of Fe doped La2O3 thin films grown by spray pyrolysis for photocatalytic applications, Mater. Res. Express, 2019, vol. 6, p. 066414. https://doi.org/10.1088/2053-1591/ab0e29
  29. Hardcastle, F.D., Wachs, I.E., Determination of Molybdenum–Oxygen Bond Distances and Bond Orders by Raman Spectroscopy, J. Raman Spectr., 1990, vol. 21, p. 683491. https://doi.org/10.1002/jrs.1250211009
  30. Шляхтина, А.В., Воробьева, Г.А., Щеголихин, А.Н., Леонов, А.В., Колбанев, И.В., Стрелецкий, А.Н. Фазообразование и поведение углеродсодержащих примесей в керамике Ln2O3:2HfO2 (Ln = Nd, Dy), синтезированной из механически активированной смеси оксидов. Неорган. материалы. 2020. Т. 56. С. 528. [Shlyakhtina, A.V., Vorobieva, G.A., Shchegolikhin, A.N., Leonov, A.V., Kolbanev, I.V., and Streletskii, A.N., Phase Relations and Behavior of Carbon-Containing Impurities in Ceramics Prepared from Mechanically Activated Ln2O3 + 2HfO2 (Ln = Nd, Dy) Mixtures, Inorganic Materials (in Russian), 2020, vol. 56, p. 528.] https://doi.org/10.1134/S002016852005012X
  31. Яновский, В.К., Воронкова, В.И. Политипизм в кристаллах La2WO6. Кристаллография. 1981. Т. 26. С. 604.
  32. Novikova, N.E., Sorokin, N.A., Antipin, A.A., Blotina, N.B., Alekseeva, O.A., Sorokina, N.I., and Voronkova, V.I., Characteristic features of polytypism in compounds with the La18W10O57-type structure, Acta Cryst., 2019, vol. 75, p. 740.
  33. Fleig, J., The influence of non-ideal microstructures on the analysis of grain boundary impedances, Solid State Ionics, 2000, vol. 131, p. 117.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (816KB)
3.

Download (113KB)
4.

Download (124KB)
5.

Download (96KB)
6.

Download (159KB)
7.

Download (531KB)
8.

Download (85KB)
9.

Download (118KB)

Copyright (c) 2023 А.В. Шляхтина, Н.В. Лысков, И.В. Колбанев, Г.А. Воробьева, А.Н. Щеголихин, В.И. Воронкова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies