Structure, Oxygen Mobility, and Electrochemical Characteristics of La1.7Ca0.3Ni1 ‒ xCuxO4 + δ Materials

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The Ruddlesden‒Popper phases pertain to numerous promising materials with the mixed ionic-electronic conductivity used in devices such as oxygen-conducting membranes, solid oxide fuel cells (SOFC), and electrolyzers, which operate in the intermediate temperature region. Their high total conductivity and oxygen mobility make these materials candidates for the mentioned applications. The structure, the oxygen mobility, and the electrochemical characteristics of the promising materials La1.7Ca0.3Ni1 – xCuxO4 + δ (x = 0–0.4) are studied. According to the high-precision XRD data, all synthesized materials are single-phased and have the tetragonal structure. The unit cell parameter c and the cell volume increase upon doping with copper. The content of overstoichiometric interstitial oxygen decreases with doping and the compositions with the high copper content become oxygen deficient. The samples are characterized by the nonuniform oxygen mobility. By and large, the trend for the decrease in the oxygen mobility with the increase in the Cu content is observed in the series of La1.7Ca0.3Ni1 – xCuxO4 + δ samples. By impedance spectroscopy studies, it is shown that the electrodes with the La1.7Ca0.3Ni1 – xCuxO4 + δ functional layers with the copper content x > 0.2 have a higher electrochemical activity. The factors responsible for the efficiency of electrodes are analyzed. The results obtained in this study demonstrate that La1.7Ca0.3Ni0.6Cu0.4O4 + δ materials are the candidates for the air electrodes in electrochemical devices.

About the authors

V. A. Sadykov

Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences

Email: sadykov@catalysis.ru
Novosibirsk, Russia

E. M. Sadovskaya

Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences

Email: e.pikalova@list.ru
Novosibirsk, Russia

N. F. Eremeev

Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences

Email: e.pikalova@list.ru
Novosibirsk, Russia

T. Yu. Maksimchuk

Institute of High Temperature Electrochemistry, Ural Branch, Russian Academy of Science; Ural Federal University

Email: e.pikalova@list.ru
Yekaterinburg, Russia; Yekaterinburg, Russia

S. M. Pikalov

Institute of Metallurgy, Ural Branch, Russian Academy of Sciences

Email: e.pikalova@list.ru
Yekaterinburg, Russia

E. A. Filonova

Ural Federal University

Email: e.pikalova@list.ru
Yekaterinburg, Russia

N. S. Pikalova

Ural Federal University; Institute of Metallurgy, Ural Branch, Russian Academy of Sciences

Email: e.pikalova@list.ru
Yekaterinburg, Russia; Yekaterinburg, Russia

A. R. Gilev

Ural Federal University

Email: e.pikalova@list.ru
Yekaterinburg, Russia

E. Yu. Pikalova

Institute of High Temperature Electrochemistry, Ural Branch, Russian Academy of Science; Ural Federal University

Author for correspondence.
Email: e.pikalova@list.ru
Yekaterinburg, Russia; Yekaterinburg, Russia

References

  1. Твердооксидные топливные элементы: проблемы, пути решения, перспективы развития и коммерциализации. Аналитический обзор [Электронный ресурс]: ФГБНУ “НИИ – Республиканский исследовательский научно-консультационный центр экспертизы”. Москва, 2015. 21 с. – Режим доступа: https:// studylib.ru/doc/2616406/tverdooksidnye-toplivnye-e-lementy-problemy-puti-resheniya (дата обращения: 05.07.2022).
  2. Ahmad, M.Z., Ahmad, S.H., Chen, R.S., Ismail, A.F., Hazan, R., and Baharuddin, N.A., Review on recent advancement in cathode material for lower and intermediate temperature solid oxide fuel cells application, Int. J. Hydrog. Energy, 2022, vol. 47, no. 2, p. 1103.
  3. Kilner, J.A. and Burriel, M., Materials for intermediate-temperature solid-oxide fuel cells, Ann. Rev. Mat. Res., 2014, vol. 44, no. 1, p. 365.
  4. Hanif, M.B., Motola, M., Rauf, S., Li, C.J., and Li, C.X., Recent advancements, doping strategies and the future perspective of perovskite-based solid oxide fuel cells for energy conversion, Chem. Eng. J., 2022, vol. 428, p. 132603.
  5. Han, N., Shen, Z., Zhao, X., Chen, R., and Thakur, V.K., Perovskite oxides for oxygen transport: chemistry and material horizons, Sci. Total Environ., 2022, vol. 806, no. 3, p.151213.
  6. Tarutin, A.P., Lyagaeva, J.G., Medvedev, D.A., Bi, L., and Yaremchenko, A.A., Recent advances in layered Ln2NiO4 + δ nickelates: fundamentals and prospects of their applications in protonic ceramic fuel and electrolysis cells, J. Mater. Chem. A., 2021, vol. 9, p. 154.
  7. Садыков, В.А., Садовская, Е.М., Еремеев, Н.Ф., Скрябин, П.И., Краснов, А.В., Беспалко, Ю.Н., Павлова, С.Н., Федорова, Ю.Е., Пикалова, Е.Ю., Шляхтина, А.В. Подвижность кислорода материалов твердооксидных топливных элементов и каталитических мембран (обзор). Электрохимия. 2019. Т. 55. С. 899. [Sadykov, V.A., Sadovskaya, E.M., Eremeev, N.F., Skriabin, P.I., Krasnov, A.V., Bespalko, Yu.N., Pavlova S.N., Fedorova Yu.E., Pikalova E.Yu., and Shlyakhtina, A.V., Oxygen mobility in the materials for solid oxide fuel cells and catalytic membranes (review), Russ. J. Electrochem., 2019, vol. 55, p. 701.]
  8. Shen, Y., Zhao, H., Xu, J., Zhang, X., Zheng, K., and Świerczek, K., Effect of ionic size of dopants on the lattice structure, electrical and electrochemical properties of La2 – xMxNiO4 + δ (M = Ba, Sr) cathode materials, Int. J. Hydrog. Energy, 2014, vol. 39, p. 1023.
  9. Wu, X., Gu, C., Cao, J., Miao, L., Fu, C., and Liu, W., Investigations on electrochemical performance of La2NiO4 + δ cathode material doped at A-site for solid oxide fuel cells, Mat. Res. Express, 2020, vol. 7, no. 2, p. 065507.
  10. Кольчугин, А.А., Пикалова, Е.Ю., Богданович, Н.М., Бронин, Д.И., Филонова, Е.А. Электрохимические свойства электродов на основе допированного никелата лантана. Электрохимия. 2017. Т. 53. С. 928. [Kol’chugin, A.A., Pikalova, E.Yu., Bogdanovich, N.M., Bronin, D.I., and Filonova, E.A., Electrochemical properties of doped lantanum–nickelate-based electrodes, Russ. J. Electrochem., 2017, vol. 53, p. 826.]
  11. Pikalova, E., Sadykov, V., Sadovskaya, E., Yeremeev, N., Kolchugin, A., Shmakov, A., Vinokurov, Z., Mishchenko, D., Filonova, E., and Belyaev V., Correlation between structural and transport properties of Ca-doped La nickelates and their electrochemical performance, Crystals, 2021, vol.11, p. 297.
  12. Tealdi, C., Ferrara, C., Mustarelli, P., and Islam, M.S., Vacancy and interstitial oxide ion migration in heavily doped La2 – xSrxCoO4 ± δ, J. Mater. Chem., 2012, vol. 22, no. 18, p. 8969.
  13. Aspera, S.M., Sakaue, M., Wungu, T.D.K., Alaydrus, M., Linh, T.P.T., Kasai, H., Nakanishi, M., and Ishihara, T., Analysis of structural and electronic properties of Pr2NiO4 through first-principles calculations, J. Phys. Condens. Matter., 2012, vol. 24, p. 405504.
  14. Forslund, R.P., Hardin, W.G., Rong, X., Abakumov, A.M., Filimonov, D., Alexander, C.T., Mefford, J.T., Iyer, H., Kolpak, A.M., Johnston, K.P., and Stevenson, K.J., Exceptional electrocatalytic oxygen evolution via tunable charge transfer interactions in La0.5Sr1.5Ni1 – xFexO4 ± δ Ruddlesden–Popper oxides, Nat. Commun., 2018, vol. 9, p. 3150.
  15. Meyer, T.L., Jacobs, R., Lee, D., Jiang, L., Freeland, J.W., Sohn, C., Egami, T., Morgan, D., and Lee, H.N., Strain control of oxygen kinetics in the Ruddlesden-Popper oxide La1.85Sr0.15CuO4, Nat. Commun., 2018, vol. 9, no. 1, p. 92.
  16. Lee, D. and Lee, H.N., Controlling oxygen mobility in Ruddlesden–Popper oxides, Materials, 2017, vol. 10, no. 4, p. 368.
  17. Allan, N.L. and Mackrodt, W.C., Oxygen ion migration in La2CuO4, Philos. Mag. A, 1991, vol. 64, p. 1129.
  18. Пикалова, Е.Ю., Калинина, Е.Г. Подходы к повышению эффективности твердооксидных топливных элементов на основе керамических мембран со смешанной проводимостью. Успехи химии. 2021. Т. 90. № 6. С. 703. [Pikalova, E.Yu. and Kalinina, E.G., Solid oxide fuel cells based on ceramic membranes with mixed conductivity: improving efficiency, Russ. Chem. Rev., 2021, vol. 90, no. 6, p. 703.]
  19. Rietveld, H.M., A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr., 1969, vol. 2, p. 65.
  20. FullProf Suite. Crystallographic tools for Rietveld, profile matching and integratedintensity refinements of X‑ray and/or neutron data. – Режим доступа: https://www.ill.eu/sites/fullprof/ (дата обращения: 05.07.2022).
  21. Wan, T.H., Saccoccio, M., Chen, C., and Ciucci, F., Influence of the discretization methods on the Distribution of Relaxation Times deconvolution: implementing radial basis functions with DRTtools, Electrochim. Acta, 2015, vol. 184, p. 483.
  22. Гаврилюк, А.Л., Осинкин, Д.А., Бронин, Д.И. О применении метода регуляризации Тихонова для вычисления функции распределения времен релаксации в импедансной спектроскопии. Электрохимия. 2017. Т. 53. С. 651. [Gavrilyuk, A.L., Osinkin, D.A., and Bronin, D.I., The use of Tikhonov regularization method for calculating the distribution function of relaxation times in impedance spectroscopy, Russ. J. Electrochem., 2017, vol. 53, p. 575.]
  23. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., 1976, vol. 32, p. 7851.
  24. Tarutin, A.P., Lyagaeva, J.G., Farlenkov, A.S., Vylkov, A.I., and Medvedev, D.M., Cu-substituted La2NiO4 + δ as oxygen electrodes for protonic ceramic electrochemical cells, Ceram. Int., 2019, vol. 45, p. 16105.
  25. Sakai, M., Wang, C., Okiba, T., Soga, H., Niwa, E., and Hashimoto, T., Thermal analysis of structural phase transition behavior of Ln2Ni1 – xCuxO4 + δ (Ln = Nd, Pr) under various oxygen partial pressures, J. Therm. Anal. Calorim., 2019, vol. 135, p. 2765.
  26. Gilev, A.R., Kiselev, E.A., Zakharov, D.M., and Cherepanov, V.A., Effect of calcium and copper/iron co-doping on defect–induced properties of La2NiO4-based materials, J. Alloy. Compd., 2018, vol. 27, p. 491.
  27. Nakamura, T., Oike, R., Ling, Y., Tamenori, Y., and Amezawa, K., Determining factor for the interstitial oxygen formation in Ruddlesden–Popper type La2NiO4-based oxides, Phys. Chem. Chem. Phys., 2015, vol. 18, no. 3, p. 491.
  28. Sadykov, V.A., Eremeev, N.F., Sadovskaya, E.M., Shlyakhtina, A.V., Pikalova, E.Y., Osinkin, D.A., and Yaremchenko, A.A., Design of materials for solid oxide fuel cells, permselective membranes, and catalysts for biofuel transformation into syngas and hydrogen based on fundamental studies of their real structure, transport properties, and surface reactivity, Curr. Opin. Green Sustain. Chem., 2022, vol. 33, p. 100558.
  29. Li, X. and Benedek, N.A., Enhancement of ionic transport in complex oxides through soft lattice modes and epitaxial strain, Chem. Mater., 2015, vol. 27, p. 2647.
  30. Maksimchuk, T., Filonova, E., Mishchenko, D., Eremeev, N., Sadovskaya, E., Bobrikov, I., Fetisov, A., Pikalova, N., Kolchugin, A., Shmakov, A., Sadykov, V., and Pikalova, E., High-temperature behavior, oxygen transport properties, and electrochemical performance of Cu-substituted Nd1.6Ca0.4NiO4 + δ electrode materials, Appl. Sci., 2022, vol. 12, no. 8, p. 3747.
  31. Miyoshi, S., Furuno, T., Sangoanruang, O., Matsumoto, H., and Ishihara, T., Mixed conductivity and oxygen permeability of doped Pr2NiO4-based oxides, J. Electrochem. Soc., 2007, vol. 154, p. B57.
  32. Sadykov, V.A., Sadovskaya, E.M., Filonova, E.A., Eremeev, N.F., Belyaev, V.D., Tsvinkinberg, V.A., and Pikalova, E.Yu., Oxide ionic transport features in Gd-doped La nickelates, Solid State Ionics, 2020, vol. 357, p. 115462.
  33. Filonova, E.A., Pikalova, E.Yu., Maksimchuk, T.Y., Vylkov, A.I., Pikalov, S.M., and Maignan, A., Crystal structure and functional properties of Nd1.6Ca0.4Ni1 – yCuyO4 + δ as prospective cathode materials for intermediate temperature solid oxide fuel cells, Int. J. Hydrog. Energy, 2021, vol. 46, no. 32, p. 17037.
  34. Escudero, M.J., Aguadero, A., Alonso, J.A., and Daza, L.A., Kinetic study of oxygen reduction reaction on La2NiO4 cathodes by means of impedance spectroscopy, J. Electroanal. Chem., 2007, vol. 611, nos. 1–2, p. 107.
  35. Antonova, E.P., Khodimchuk, A.V., Usov, G.R., Tropin, E.S., Farlenkov, A.S., Khrustov, A.V., and Ananyev, M.V., EIS analysis of electrode kinetics for La2NiO4 cathode in contact with Ce0.8Sm0.2O1.9 electrolyte: from DRT analysis to physical model of the electrochemical process, J. Solid State Electrochem., 2019, vol. 23, p. 1279.
  36. Li, Z., Haugsrud, R., and Norby, T., Oxygen bulk diffusion and surface exchange in Sr-substituted La2NiO4 + δ, Solid State Ionics, 2011, vol. 184, no. 1, p. 42.
  37. Кольчугин, А.А., Пикалова, Е.Ю., Богданович, Н.М., Бронин, Д.И. Влияние меди на свойства катодов на основе La1.7Ca0.3NiO4+δ для твердооксидных топливных элементов. Электрохимия. 2015. Т. 51. С. 556. [Kolchugin, A.A., Pikalova, E.Yu., Bogdanovich, N.M., and Bronin, D.I., The effect of copper on the properties of La1.7Ca0.3NiO4 + δ-based cathodes for solid oxide fuel cells, Russ. J. Electrochem., 2015, vol. 51, p. 483.]

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (59KB)
3.

Download (174KB)
4.

Download (19KB)
5.

Download (502KB)
6.

Download (68KB)
7.

Download (2MB)
8.

Download (155KB)
9.

Download (66KB)
10.

Download (161KB)

Copyright (c) 2023 В.А. Садыков, Е.М. Садовская, Н.Ф. Еремеев, Т.Ю. Максимчук, С.М. Пикалов, Е.А. Филонова, Н.С. Пикалова, А.Р. Гилев, Е.Ю. Пикалова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies