Using quasi-experimental methods for quantitative research of government policies’ measures of SMB support

Мұқаба

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In this work we analyze methodologies that are used in research to obtain estimates of policies efficiency and will show how Propensity Score Methods can be adopted to the given scarce data on the case of Russian loan guarantee program. We take number of workers employed in Russian SMEs as a target metric; an aim to increase this number to 25 ml workers which is claimed in Russia’s national development goals. The study suggests methods for matching PSM propensity scores that can be applied to obtain an assessment of the effectiveness of a specific government measure. These methods, along with two-stage Heckman regression and panel data models for multi-period Difference-in-Difference expansion, seem to be the most suitable for evaluating the effect of intervention and reducing sampling error. The estimates obtained on the basis of this methodology indicate a significant positive effect of issuing guarantees in terms of increasing employment. Also we highlighted industries with the most positive average treatment effect from the program. Those policy measures the efficiency of which was proved by quantitative research need to be promoted more actively than less efficient measures: authorities need to reduce obstacles that beneficiaries can face to receive government support, to increase financing, to improve SMEs’ awareness of such policy measures.

Авторлар туралы

A. Beloglazov

Foundation “Gaidar Institute for Economic Policy”; Lomonosov Moscow State University

Email: beloglazov@iep.ru
Moscow, Russia; Moscow, Russia

I. Manakhova

Lomonosov Moscow State University; Peoples’ Friendship University of Russia named after Patrice Lumumba

Email: ManakhovaIV@mail.ru
Moscow, Russia; Moscow, Russia

K. Khalturin

Foundation “Gaidar Institute for Economic Policy”

Email: khalturin@iep.ru
Moscow, Russia

Әдебиет тізімі

  1. Аганбегян А. Г. (2023a). Инновации в России: от высокого знания и наличия перспективных научных заделов к эффективному социально-экономическому развитию // Экономическое возрождение России. № 2 (76). С. 13–26. doi: 10.37930/1990-9780-2023-2 (76)-13-26 [Aganbegyan A. G. (2023a). Innovations in Russia: From possessing the higher knowledge and promising scientific groundwork towards effective socio-economic development. Economic Revival of Russia, 2 (76), 13–26. doi: 10.37930/1990-9780-2023-2 (76)-13-26 (in Russian).]
  2. Аганбегян А. Г. (2023б). «Кремниевые долины» — зоны инноваций в США, Китае, ЕС, России и других странах // Экономика науки. № 9 (2). С. 8–19. doi: 10.22394/2410-132X-2023-9-2-8-19 [Aganbegyan A. G. (2023b). “Silicon Valleys” — innovation zones in the USA, China, EU, Russia, and other countries. Economics of Science, 9 (2), 8–19. doi: 10.22394/2410-132X-2023-9-2-8-19 (in Russian).]
  3. Дементьев В. Е. (2023). Обновление технологической базы производства и процентная ставка // Экономическое возрождение России. № 2 (76). С. 70–83. doi: 10.37930/1990-9780-2023-2(76)-70-83 [Dementiev V. E. (2023). Updating the technological foundation of production and percentage policy. Economic Revival of Russia, 2 (76), 70–83. doi: 10.37930/1990-9780-2023-2(76)-70-83 (in Russian).]
  4. Казанцев К. И., Румянцева А. Е. (2020). От избрания к назначению. Оценка эффекта смены модели управления муниципалитетами в России. М.: ЦПУР. Режим доступа: https://cpur.ru/new-research/r_local_government_from_election_to_appointment. [Kazantsev K. I., Rumyantseva A. E. (2020). From electing to appointment: Effect of changing the model of municipalities governance in Russia. Moscow: Center for advanced governance. Available at: https://cpur.ru/new-research/r_local_government_from_election_to_appointment (in Russian).]
  5. Манахова И. В., Белоглазов А. Д. (2023). Цифровая трансформация малого и среднего бизнеса в России: вызовы, перcпективы и роль государственной поддержки // Российский экономический журнал. № 5. С. 112– 124. doi: 10.52210/0130-9757_2023_5_112 [Manakhova I. V., Beloglazov A. D. (2023). Digital transformation of small and medium sized business in Russia: Challenges, prospects and the role of state support. Russian Economic Journal, 5, 112–124. doi: 10.52210/0130-9757_2023_5_112 (in Russian).]
  6. Медовников Д. С., Оганесян Т. К., Розмирович С. Д. (2016). Кандидаты в чемпионы: средние быстрорастущие компании и программы их поддержки // Вопросы экономики. № 9. С. 50–66. doi: 10.32609/0042-8736-2016-9-50-66 [Medovnikov D. S., Oganesyan T. K., Rozmirovich S. D. (2016). Сandidates for the championship: Mediumsized high growth companies and state-run programs for their support. Voprosy Economiki, 9, 50–66 (in Russian).]
  7. Орехова С. В., Лопатин В. М. (2022). Зомби-компании: феномен, методы индентификации и влияние на конкуренцию // Вестник Омского университета. Серия «Экономика». Т. 20. № 2. С. 47–63. doi: 10.24147/1812-3988.2022.20 (2).47-63 [Orekhova S. V., Lopatin V. M. (2022). Zombie companies: Phenomenon, identification methods and impact on competition. Herald of Omsk University. Series “Economics”, 20 (2), 47–63. doi: 10.24147/1812-3988.2022.20 (2).47-63 (in Russian).]
  8. Репина Е. Г., Ширяева Л. К., Федорова Е. А. (2019). Исследование зависимости между развитием малого предпринимательства и микрофинансовой обеспеченностью регионов РФ // Экономика и математические методы. Т. 55. № 2. С. 41–57. doi: 10.31857/S042473880004680-7 [Repina E. G., Shiryaeva L. K., Fedorova E. A. (2019). The Study of Dependence Structure between Small Business Development and Microfinance Security of Russian Regions. Economics and Mathematical methods, 55, 2, 41–55. doi: 10.31857/S042473880004680-7 (in Russian).]
  9. Asdrubali P., Signore S. (2015). The economic impact of EU guarantees on credit to SMEs — evidence from CESEE countries. EIF Working Paper Series. Luxembourg: European Investment Fund (EIF).
  10. Austin P. (2011). Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies. Pharmaceutical Statistics, Marсh–April. doi: 10.1002/pst.433
  11. Del Monte A., Scalera D. (2001). The life duration of small firms born within a start-up programme: Evidence from Italy. Regional Studies, 35, 1. doi: 10.1080/00343400120025646
  12. Flury B.K, Riedwyl H. (1986). Standard distance in univariate and multivariate analysis. The American Statistician, 40, 3, 249–251. doi: 10.1080/00031305.1986.10475403
  13. Khrupina K., Manakhova I., Putilov A. (2022). Developing of smart technical platforms concerning national economic security. In: V. V. Klimov, D. J. Kelley (eds.). Biologically inspired cognitive architectures 2021. BICA 2021. Conference proceeding: Studies in Computational Intelligence, 1032, 208–215. Cham.: Springer. doi: 10.1007/978-3-030-96993-6_20
  14. Riding A., Haines G. (2011). Loan guarantee: Cost of default and benefit to small firms. Journal of Business Venturing, 16, 6, 595–612. doi: 10.1016/S0883-9026 (00)00050-1
  15. Roper S., Hewitt-Dundas N. (2001). Grant assistance and small firm development in Northern Ireland and the Republic of Ireland. Scottish Journal of Political Economy, 48, 1. doi: 10.1111/1467-9485.00187
  16. Rosenbaum P., Rubin D. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70, 41–55. doi: 10.2307/2335942

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».