Using online data to construct hedonic price indices for smartphones

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this work, hedonic indices and hedonic regressions are estimated for smartphone prices. The indices are built using a special collection of big data from online retailers that comprises a large number of representative observations and a wide range of product attributes (1.9 million distinct smartphone price observations since July 2022). We demonstrate that, for smartphones, the dynamics of hedonic indices built with the techniques suggested in the literature are substantially greater than Rosstat price index. Furthermore, we indirectly validate that the skimming pricing strategy of smartphones, in which a high price is initially set for a variety and then lowered. In the case of using simple methods of accounting for quality in the consumer price index, that is common among statistical agencies, the use of pricing strategies by manufacturers and retailers, along with frequent changes in product ranges, ultimately result in the depletion of the observation sample and a bias in the consumer price index. This supports the use of hedonic regression-based techniques to enhance the ways in which price dynamics are adjusted for changes in quality. Hedonic regressions should use all quality attributes that are pertinent to price fluctuations as regressors rather than fixed effects of varieties, according to another finding. A bias in the consumer price index happens when simplified regression specifications are used. For price adjustments, Rosstat will be encouraged to collect information on all qualitative traits of the varieties. Increased confidence in the published data will result from the addition of hedonic methods to Rosstat’s toolkit, which will help make the published CPI more representative.

About the authors

R. R. Latypov

VTB; Moscow State University

Email: Rodion.Latypov@vtbcapital.ru
Moscow, Russia

E. A. Postolit

Euler Research Technologies

Email: Egor.Postolit@euler.team
Moscow, Russia

E. A. Akhmedova

Euler Research Technologies

Email: Elena.Akhmedova@euler.team
Moscow, Russia

References

  1. Житков К. В., Ратникова Т. А. (2014). Построение гедонистических ценовых индексов на полотна художников-фовистов // Прикладная эконометрика. № 3 (35). С. 59–85. [Zhitkov K. V., Ratnikova T. A. (2014). Construction of hedonic price indices for paintings by Fauvist artists. Applied Econometrics, 3 (35), 59–85 (in Russian).]
  2. Зямалов В. Е., Турунцева М. Ю. (2024). Анализ влияния качественных свойств товаров на их ценовые индексы // Журнал Новой экономической ассоциации. № 1 (62). С. 196–209. doi: 10.31737/22212264_2024_1_196-209 [Zyamalov V. E., Turuntseva M.Yu. (2024). Analysis of the influence of qualitative properties of goods on their price indices. Journal of the New Economic Association, 1 (62), 196–209. doi: 10.31737/22212264_2024_1_196-209 (in Russian).]
  3. Игнатенко А., Михайлова Т. (2015). Ценообразование на рынке аренды офисной недвижимости Москвы: гедонический анализ // Экономическая политика. Т. 10. № 4. 156–177. [Ignatenko A., Mikhailova T. (2015). Pricing in the Moscow office rental market: Hedonic analysis. Economic Policy, 10, 4. 156–177 (in Russian).]
  4. Исаков А., Латыпов Р., Репин А., Постолит Е., Евсеев А., Синельникова-Мурылева Е. (2021). Твердые цифры: открытые микроданные о потребительских ценах // Деньги и кредит. Т. 80. № 1. Март. С. 104–119. [Isakov A., Latypov R., Repin A., Postolit E., Evseev A., Sinelnikova-Muryleva E. (2021). Hard numbers: Open consumer price database. Russian Journal of Money and Finance, 80 (1), 104–119 (in Russian).]
  5. Турунцева М. Ю., Зямалов В. Е. (2022). Гедонические ценовые индексы: опыт применения к российскому рынку // Экономический журнал Высшей школы экономики. Т. 26. № 3. С. 429–449. doi: 10.17323/1813-8691-2022-26-3-429-449 [Turuntseva M.Yu., Zyamalov V. E. (2022). Hedonic price indices: Experience of application to the Russian market. The HSE Economic Journal, 26, 3, 429–449. doi: 10.17323/1813-8691-2022-26-3-429-449 (in Russian).]
  6. Fox K., Melser D. (2012). Non-linear pricing and price indexes: Evidence and implications from scanner data. The Review of Income and Wealth, 60, 2, 261–278. doi: 10.1111/roiw.12000
  7. Grishchenko V., Krylov I. (2024). New approaches to measuring, analysing, and forecasting prices: A review of the Bank of Russia, NES, and HSE University Workshop. Russian Journal of Money and Finance, 83 (2), 92–111. Available at: https://rjmf.econs.online/en/2024/2/measuring-analysing-and-forecasting-prices/
  8. Haan J. de (2015). A framework for large scale use of scanner data in the Dutch CPI. In: “Report from Ottawa Group 14th meeting, International working group on price indices”. Ottawa Group, l, 1–43. Tokyo, Japan.
  9. Haan J. de, Hendriks R., Scholz M. (2020). Price measurement using scanner data: Time-product dummy versus time dummy hedonic indexes. Review of Income and Wealth, 67, 2, 394–417. doi: 10.1111/roiw.12468
  10. Melser D., Syed I. (2015). Life cycle price trends and product replacement: Implications for the measurement of inflation. Review of Income and Wealth, 62, 3, 509–533. doi: 10.1111/roiw.12166
  11. Silver M., Heravi S. (2005). A failure in the measurement of inflation: Results from a hedonic and matched experiment using scanner data. Journal of Business & Economic Statistics, 23 (3), 269–281. doi: 10.1198/073500104000000343
  12. Teekens R., Koerts J. (1972). Some statistical implications of the log transformation of multiplicative models. Econometrica, 40 (5), 793–819. doi: 10.2307/1912069

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».