Assessing the accuracy of efficiency rankings obtained from a stochastic frontier model with truncated normal distribution of inefficiency

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A stochastic frontier model is a regression model where an explained variable is either output of a firm or its costs, and unexplained variation of this variable is divided into two components: inefficiency and stochastic shock. These components are modeled by random variables with different families of distributions. The model allows estimation of inefficiency at firm level and at industry level refined from the effects of stochastic shocks. At present it is the basic instrument for analyzing the efficiency and productivity. We consider a problem of assessing the accuracy of inefficiency estimators, obtained via stochastic frontier model with truncated normal distribution of inefficiency components. We propose using Harrell’s C-index as a measure of concordance between true inefficiencies and their estimates. We derive the expression for the asymptotic C-index as a function of distribution parameters of model’s random components (stochastic shocks and inefficiencies). The derived expression can be used by practitioners for assessing the ranking ability of a stochastic frontier model. The value of C-index has clear interpretation: it is the probability of choosing a more efficient firm from two randomly selected ones. For demonstration purposes, we provide historical data on cotton refining plants in the Soviet Union. The obtained result may be useful both for academic researchers and for regulatory agencies.

Full Text

Restricted Access

About the authors

E. Ahmedov

Federal Research Center “Computer Science and Control” RAS

Author for correspondence.
Email: aheldar@mail.ru
Russian Federation, Moscow

C. C. Furmanov

Central Economics and Mathematics Institute, Russian Academy of Sciences (CEMI RAS)

Email: furmach@menja.net
Russian Federation, Moscow

References

  1. Айвазян С. А., Афанасьев М. Ю., Руденко В. А. (2014). Оценка эффективности регионов РФ на основе модели производственного потенциала с характеристиками готовности к инновациям // Экономика и математические методы. Т. 50. № 4. С. 34–70. [Aivazian S. A., Afanasiev M.Yu., Rudenko V. A. (2014). Efficiency estimation of Russian regions based on the productive potential model including the characteristics of readiness to innovate. Economics and Mathematical Methods, 50, 4, 34–70 (in Russian).]
  2. Головань С. В. (2006). Факторы, влияющие на эффективность российских банков // Прикладная эконометрика. Т. 2. С. 3–17. [Golovan S. (2006). Factors influencing the efficiency of Russian banks performance. Applied Econometrics, 2, 3–17 (in Russian).]
  3. Головань С. В., Карминский А. М., Пересецкий А. А. (2008). Эффективность российских банков с точки зрения минимизации издержек с учетом факторов риска // Экономика и математические методы. Т. 44. № 4. С. 28–38. [Golovan S. V., Karminsky A. M., Peresetsky A. A. (2008). Cost efficiency of Russian banks, taking into account the risk factors. Economics and Mathematical Methods, 44, 4, 28–38 (in Russian).]
  4. Ипатова И. Б., Пересецкий А. А. (2013). Техническая эффективность предприятий отрасли производства резиновых и пластмассовых изделий // Прикладная эконометрика. Т. 32. С. 71–92. [Ipatova I., Peresetsky A. (2013). Technical efficiency of Russian plastic and rubber production firms. Applied Econometrics, 32, 71–92 (in Russian).]
  5. Малахов Д. И., Пильник Н. П. (2013). Методы оценки показателя эффективности в моделях стохастической производственной границы // Экономический журнал ВШЭ. Т. 17. № 4. С. 660–686. [Malakhov D., Pilnik N. (2013). Methods of estimating of the efficiency in stochastic frontier models. HSE Economic Journal, 17 (4), 660–686 (in Russian).]
  6. Матеров И. С. (1981). К проблеме полной идентификации модели стохастических границ производства // Экономика и математические методы. Т. 17. № 4. С. 784–788. [Materov I. S. (1981). On full identification of the stochastic production frontier model. Economics and Mathematical Methods, 17, 4, 784–788 (in Russian).]
  7. Никольский И. М., Фурманов К. К. (2023). Измерение точности ранжировок предприятий по эффективности в модели стохастической границы // Прикладная эконометрика. Т. 71. С. 128–142. doi: 10.22394/1993-7601-2023-71-128-142 [Nikolskiy I. M., Furmanov K. K. (2023). Assessing the accuracy of efficiency rankings obtained from a stochastic frontier model. Applied Econometrics, 71, 128–142. doi: 10.22394/1993-7601-2023-71-128-142 (in Russian).]
  8. Цветкова А. Н. (2021). Динамика технической эффективности российских предприятий в 2013–2018 годах // Прикладная эконометрика. Т. 63. С. 91–116. doi: 10.22394/1993-7601-2021-63-91-116 [Tsvetkova A. (2021). Technical efficiency trends of Russian firms in 2013–2018. Applied Econometrics, 63, 91–116. doi: 10.22394/1993-7601-2021-63-91-116 (in Russian).]
  9. Щетинин Е. И., Назруллаева Е. Ю. (2012). Производственный процесс в пищевой промышленности: взаимосвязь инвестиций в основной капитал и технической эффективности // Прикладная эконометрика. Т. 28. С. 63–84. [Shchetynin Ye.I., Nazrullaeva E. Yu. (2012). Effects of fixed capital investments on technical efficiency in food industry. Applied Econometrics, 28, 63–84 (in Russian).]
  10. Aigner D., Lovell C. A.K., Schmidt P. (1977). Formulation and estimation of stochastic frontier function models. Journal of Econometrics, 6, 21–37.
  11. Aleskerov F. T., Belousova V.Yu., Petrushchenko V. V. (2017). Models of data envelopment analysis and stochastic frontier analysis in the efficiency assessment of universities. Automation and Remote Control, 78 (5), 902–923. doi: 10.1134/S0005117917050125
  12. Battese G.E, Coelli T. J. (1988). Prediction of firm-level technical efficiencies: With a generalized frontier production function and panel data. Journal of Econometrics, 38, 387–399.
  13. Charnes A., Cooper W. W., Rhodes E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2 (6). 429–444. doi: 10.1016/0377-2217 (78)90138-8
  14. Danilin V. I., Materov I. S., Rosefielde S., Lovell C. A.K. (1985). Measuring enterprise efficiency in the Soviet Union: A stochastic frontier analysis. Economica, 52 (206), 225–233.
  15. Farrell M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society. Series A (General), 120, 253–290.
  16. Greene W. H. (1990). A gamma-distributed stochastic frontier model. Journal of Econometrics, 46, 141–163. doi: 10.1016/0304-4076 (90)90052-U
  17. Greene W. H. (2002). Econometric analysis. 5th ed. Upper Saddle River: Prentice Hall.
  18. Haney A. B., Pollitt M. G. (2013). International benchmarking of electricity transmission by regulators: A contrast between theory and practice. Energy Policy, 62, 267–281.
  19. Harrell F. E., Califf R. M., Pryor D. B., Lee K. L., Rosati R. A. (1982). Evaluating the yield of medical tests. Journal of the American Medical Association, 247, 2543–2546.
  20. Horrace W. C., Schmidt P. (1996). Confidence statements for efficiency estimates from stochastic frontier models. Journal of Productivity Analysis, 7, 257–282.
  21. Horrace W. C., Seth R.-S., Wright I. (2015). Expected efficiency ranks from parametric stochastic frontier models. Empirical Economics, 48, 2, 829–848. doi: 10.1007/s00181-014-0808-8
  22. Jamasb T., Pollitt M. (2000). Benchmarking and regulation: International electricity experience. Utilities Policy, 9 (3), 107–130.
  23. Jondrow J., Lovell C. A.K., Materov I. S., Schmidt P. (1982). On the estimation of technical inefficiency in stochastic frontier production function model. Journal of Econometrics, 19, 233–239.
  24. Kirjavainen T. (2012). Efficiency of Finnish general upper secondary schools: An application of stochastic frontier analysis with panel data. Education Economics, 20 (4), 343–364.
  25. Meeusen W., Broeck J. van den (1977). Efficiency estimation from Cobb–Douglas production functions with composed error. International Economic Review, 18 (2), 435–444.
  26. Newson R. (2002). Parameters behind “nonparametric” statistics: Kendall’s tau, Somers’ D and median differences. Stata Journal, 2, 45–64.
  27. Stevenson R. E. (1980). Likelihood functions for generalized stochastic frontier estimation. Journal of Econometrics, 13, 57–66.
  28. Winsten C. B. (1957). Discussion on Mr. Farrell’s paper. Journal of the Royal Statistical Society. Series A (General), 120, 282–284.

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».