Approximation to portfolio liquidation value with calculation of its skewness

Мұқаба

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A boundary problem for a homogeneous multidimensional diffusion process is considered under the assumption of small perturbations. Approximations to the mean, second and third central moments of the process at the moment of the first crossing a given plane in phase space are presented as a solution of ordinary differential equations with an additional transformation (“projection onto the boundary”). The quantile of a linear combination of coordinates is estimated by the second order expansion in powers of a small parameter determining the magnitude of perturbations. In the first approximation, this expansion corresponds to the Gaussian distribution, the next term contains skewness. The result is extended to a process with multiple boundaries, upon reaching each of them the equation of the process changes. Such a model describes the liquidation of a portfolio of financial instruments in which the closing rate of each of the positions is a random process. The result is illustrated by two examples. In the first example a portfolio consists of linear instruments (such as stocks, futures), prices are correlated Geometric Brownian Motions with zero drift. The closing rates are constant, but with random noise due to daily fluctuations in trading volume. In this particular case approximations for the mean, variance, skewness, VaR and CVaR of the financial result of portfolio liquidation are given explicitly. In the second example, the liquidation of an exchange-traded option position is considered under the assumption that the closing rate depends on the ratio of the underlying price to the strike of the option. Numerical calculations demonstrate that taking into account skewness significantly increases the accuracy of estimates.

Толық мәтін

Рұқсат жабық

Авторлар туралы

Aleksander Balabushkin

BrokerCreditService

Хат алмасуға жауапты Автор.
Email: emm@cemi.rssi.ru
Ресей, Moscow

Әдебиет тізімі

  1. Балабушкин А.Н. (1991). Прогнозирование состояния динамического объекта в мо-мент достижения границы при малых возмущениях // Автоматика и телемеханика. № 11. С. 64–70.
  2. Липцер Р.Ш., Ширяев А.Н. (1974). Статистика случайных процессов. М.: Наука.
  3. Avellaneda M., Dong Y., Valkai B. (2015). Optimal portfolio liquidation and macro hedging. Bloomberg quant seminar. Available at: https://math.nyu.edu/~avellane/
  4. Avellaneda M., Cont R. (2013). Close-out risk evaluation (CORE): A new risk management approach for central counterparties. Working Paper. Available at: http://ssrn.com/abstract=2247493
  5. Boudt K., Peterson B., Croux C. (2008). Estimation and decomposition of downside risk for portfolios with non-normal returns. J. Risk, 11, 79–103.
  6. De Genaro A. (2016). Systematic multi-period stress scenarios with an application to CCP risk management. Journal of Banking & Finance, Elsevier, 67 (C), 119–134.
  7. Fleming W.H. (1974). Stochastically perturbed dynamical systems. Rocky Mountain J. Math, 4, 3, 407–433.
  8. Kim H. (2014). Optimal execution under liquidity constraints. PhD Thesis. Courant Institute of Mathematical Sciences. New York University. Available at: https://www.math.nyu.edu/~avellane/HSK_Thesis.pdf
  9. Jorion P. (2007). Value at risk: The new benchmark for managing financial risk. N.Y.: McGraw Hill.
  10. Vicente L.A.B.G., Cerezetti F.V., Faria S.R. de, Iwashita T., Pereira O.R. (2015). Manag-ing risk in multi-asset class, multimarket central counterparties: The CORE approach. J. Banking & Finance, 51, 119–130.

© Ekonomika i matematicheskie metody, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».