The macroeconomic role of the collateral constraint in resource-rich countries

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this paper, we consider DSGE model of a small open economy highly dependent on resource export. The aim of the study is to identify the role of the collateral constraint in the terms-of-trade (TOT) shock transmission. The model contains two non-linear constraints in the form of inequalities: the collateral constraint and the zero lower bound constraint. We have found that if the monetary policy is not inertial, then under a series of unidirectional TOT shocks, the response of the economy is highly skewed with respect to positive and negative shocks. Both inequalities bind and reduce the positive impact of the TOT shock. If the monetary policy is inertial or the central bank reacts poorly to inflation change, then only the collateral constraint binds, and the effect of asymmetry almost disappears

Full Text

Restricted Access

About the authors

Mikhail Y. Andreyev

Bank of Russia; RANEPA

Email: emm@cemi.rssi.ru

Senior economist; senior researcher

Russian Federation, Moscow

Andrey V. Polbin

Russian Presidential Academy of National Economy and Public Administration (RANEPA), Moscow; Gaidar Institute

Author for correspondence.
Email: emm@cemi.rssi.ru

Head of the Laboratory on economic processes mathematical modeling

Russian Federation

References

  1. Андреев М.Ю., Полбин А.В. (2019). Исследование эффекта финансового акселератора в DSGE модели с описанием производства экспортного продукта // Журнал новой экономической ассоциации. № 4 (44). C 12-49.
  2. Карев М.Г. (2011). Задача выявления предпочтений Банка России. Имитационный подход // Журнал новой экономической ассоциации. № 9. С. 72-97.
  3. Полбин А.В. (2014). Эконометрическая оценка структурной макроэкономической модели российской экономики // Прикладная эконометрика. № 1 (33). С. 3-29.
  4. Aastveit K.A., Anundsen A.K. (2017). Asymmetric effects of monetary policy in regional housing markets. Working Paper 2017/25, Norges Bank.
  5. Andres J., Arce O., Thomas C. (2013). Banking Competition, Collateral Constraints, and Optimal Monetary Policy // Journal of Money, Credit and Banking. Vol. 45(s2). P. 87-125.
  6. Andreyev M., Polbin A. (2021). Optimal simple monetary policy rules for a resource-rich economy and the Zero Lower Bound. Bank of Russia Working Paper Series wps81, Bank of Russia.
  7. Aruoba B., Cuba-Borda P., Schorfheide F. (2018). Macroeconomic Dynamics Near the ZLB: A Tale of Two Countries // Review of Economic Studies. Vol. 85. No. 1. P. 87-118.
  8. Bernanke B.S., Gertler M., Gilchrist S. (1999). The financial accelerator in a quantitative business cycle framework // Handbook of macroeconomics, vol. 1. The Netherlands: North-Holland. P. 1341-1393.
  9. Brzoza-Brzezina M., Kolasa M., Makarski K. (2013). The anatomy of standard DSGE models with financial frictions // Journal of Economic Dynamics and Control. Vol. 37. No. 1. P. 32-51.
  10. Cover J. (1992). Asymmetric effects of positive and negative money supply shocks // Quarterly Journal of Economics. Vol. 107. No. 4. P. 1261–1282.
  11. Davis S., Presno I. (2017). Capital controls and monetary policy autonomy in a small open economy // Journal of Monetary Economics. Vol. 85(C). P. 114-130.
  12. Elliott G., Komunjer I., Timmermann A. (2008). Biases in Macroeconomic Forecasts: Irrationality or Asymmetric Loss? // Journal of the European Economic Association. Vol. 6. No. 1. P. 122-157.
  13. Gertler M., Kiyotaki N., Queralto A. (2012). Financial crises, bank risk exposure and government financial policy // Journal of Monetary Economics. Vol. 59(S). P. 17-34.
  14. Gertler M., Kiyotaki N., Prestipino A. (2020). Credit Booms, Financial Crises, and Macroprudential Policy // Review of Economic Dynamics. Vol. 37. P. 8-33.
  15. Guerrieri L., Iacoviello M. (2015). OccBin: A toolkit for solving dynamic models with occasionally binding constraints easily // Journal of Monetary Economics. Vol. №70(C). P. 22-38.
  16. Guerrieri L., Iacoviello M. (2017). Collateral constraints and macroeconomic asymmetries // Journal of Monetary Economics. Vol. 90(C). P. 28-49.
  17. Hirose Y., Inoue A. (2016). The Zero Lower Bound and Parameter Bias in an Estimated DSGE Model // Journal of Applied Econometrics. Vol. 31. No. 4. P. 630-651.
  18. Iiboshi H., Shintani M., Ueda K. (2020). Estimating a Nonlinear New Keynesian Model with the Zero Lower Bound for Japan. Working Papers e154, Tokyo Center for Economic Research.
  19. Holden T. (2016). Computation of solutions to dynamic models with occasionally binding constraints. EconStor Preprints 130143, ZBW - Leibniz Information Centre for Economics.
  20. Karras G. (1996). Are the output effects of monetary policy asymmetric? Evidence from a sample of European countries // Oxford Bulletin of Economics and Statistics. Vol. 58. P. 267–278.
  21. Kiyotaki N., Moore J. (1997). Credit cycles // Journal of political economy. Vol. 105. No. 2. P. 211-248.
  22. Kocherlakota N. (2000). Creating business cycles through credit constraints // Federal Reserve Bank of Minneapolis. Quarterly Review. No. 24. P. 2-10.
  23. Lepetyuk V., Maliar L., Maliar S. (2020). When the U.S. catches a cold, Canada sneezes: A lower-bound tale told by deep learning // Journal of Economic Dynamics and Control. Vol. 117(C).
  24. Liu Z., Wang P., Zha T. (2013). Land‐Price Dynamics and Macroeconomic Fluctuations // Econometrica. Vol. 81. No. 3. P. 1147-1184.
  25. Liu Z., Miao J., Zha T. (2016). Land prices and unemployment // Journal of Monetary Economics. Vol. 80(C). P. 86-105.

Copyright (c) 2023 Ekonomika i matematicheskie metody

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».