BALANCE-CHARACTERISTIC METHOD FOR CALCULATING HEMODYNAMICS OF A SINGLE VESSEL

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The paper is devoted to the construction of a numerical algorithm for calculating the blood flow in a volume vessel. The derivation of the system of differential equations describing the dynamics of fluid in a single vessel with moving walls in cylindrical coordinates assuming axial symmetry in arbitrary eulerianlagrangian variables is given. Balance-characteristic scheme based on the CABARET methodology is constructed for the obtained system of equations. The results of calculations of test problems are given.

Sobre autores

V. Goloviznin

Lomonosov Moscow State University; Moscow Center of Fundamental and Applied Mathematics

Email: gol@ibrae.ac.ru
Russia; Russia

V. Konoplianikov

Lomonosov Moscow State University

Email: vaskonopl@mail.ru
Russia

P. Maiorov

Lomonosov Moscow State University; Moscow Center of Fundamental and Applied Mathematics

Email: maiorov.peter@gmail.com
Russia; Russia

S. Mukhin

Lomonosov Moscow State University; Moscow Center of Fundamental and Applied Mathematics

Email: vmmus@cs.msu.ru
Russia; Russia

Bibliografia

  1. Sherwin, S.J. One-dimensional modelling of a vascular network in space-time variables / S.J. Sherwin, V. Franke, J. Peiro, K. Parker // J. of Engineering Math. — 2003. — V. 47. — P. 217–250.
  2. Formaggia, L. One-dimensional models for blood flow in arteries / L. Formaggia, D. Lamponi, A. Quarteroni // J. of Engineering Math. — 2003. — V. 47. — P. 251–276.
  3. Симаков, С.С. Современные методы математического моделирования кровотока с помощью осредненных моделей / С.С. Симаков // Компьют. исследования и моделирование. — 2018. — Т. 10, № 5. — С. 581–604.
  4. Вычислительный эксперимент в гемодинамике / А.Я. Буничева, С.И. Мухин, Н.В. Соснин, А.П. Фаворский // Дифференц. уравнения. — 2004. — Т. 40, № 7. — С. 920–935.
  5. Multiscale modelling of the circulatory system: a preliminary analysis / L. Formaggia, F. Nobile, A. Quarteroni, A. Veneziani // Comput. Visual. Sci. — 1999. — V. 2. — P. 75–83.
  6. On the coupling of 3D and ID Navier–Stokes equations for flow problems in compliant vessels / L. Formaggia, J.-F. Gerbeau, F. Nobile, A. Quarteroni // Comput. Meth. Appl. Mech. Eng. — 2001. — V. 191, № 6–7. — P. 561–582.
  7. Dobroserdova, T. Multiscale coupling of compliant and rigid walls blood flow models / T. Dobroserdova, M. Olshanskii, S. Simakov // Int. J. for Numerical Methods in Fluids. — 2016. — V. 82, № 12. — P. 799–817.
  8. Quarteroni, A. Computational vascular fluid dynamics: problems, models and methods / A. Quarteroni, M. Tuveri, A. Veneziani // Comput. Visualisation Sci. — 2000. — V. 2. — P. 163–197.
  9. Personalized Computational Hemodynamics: Models, Methods, and Applications for Vascular Surgery and Antitumor Therapy / Y. Vassilevski, M. Olshanskii, S. Simakov [et al.]. — Academic Press, 2020. — 280 p.
  10. A finite element method for the Navier–Stokes equations in moving domain with application to hemodynamics of the left ventricle / A. Danilov, A. Lozovskiy, M. Olshanskii, Yu. Vassilevski // Russ. J. Numer. Anal. Math. Modelling. — 2017. — V. 32, № 4. — P. 225–236.
  11. Ландау, Л.Д. Теоретическая физика. Т. VI. Гидродинамика / Л.Д. Ландау, Е.М. Лифшиц. — М. : Наука, 1986. — 736 с.
  12. Новые алгоритмы вычислительной гидродинамики для многопроцессорных вычислительных комплексов / В.М. Головизнин, М.А. Зайцев, С.А. Карабасов, И.А. Короткин. — М. : Изд-во Моск. ун-та, 2013. — 467 с.
  13. Головизнин, В.М. Нелинейная коррекция схемы Кабаре / В.М. Головизнин, С.А. Карабасов // Мат. моделирование. — 1998. — Т. 10, № 12. — С. 107–123.
  14. Sherwin, S.J., Franke, V., Peiro, J., and Parker, K., One-dimensional modelling of a vascular network in spacetime variables, J. Engineer. Math., 2003, vol. 47, pp. 217–250.
  15. Formaggia, L., Lamponi, D., and Quarteroni, A., One-dimensional models for blood flow in arteries, J. Engineer. Math., 2003, vol. 47, pp. 251–276.
  16. Simakov, S.S., Modern methods of mathematical modeling of blood flow using reduced order methods, Comp. Research Model., 2018, vol. 10, no. 5, pp. 581–604.
  17. Bunicheva, A.Ya., Mukhin, S.I., Sosnin, N.V., and Favorskii, A.P., Numerical experiment in hemodynamics, Differ. Equat., 2004, vol. 40, no. 7, pp. 984–999.
  18. Formaggia, L., Nobile, F., Quarteroni, A., and Veneziani, A., Multiscale modelling of the circulatory system: a preliminary analysis, Comput. Visual. Sci., 1999, vol. 2, pp. 75–83.
  19. Formaggia, L., Gerbeau, J.-F., Nobile, F., and Quarteroni, A., On the coupling of 3D and ID Navier–Stokes equations for flow problems in compliant vessels, Comput. Meth. Appl. Mech. Eng., 2001, vol. 191, no. 6–7, pp. 561–582.
  20. Dobroserdova, T., Olshanskii, M., and Simakov S., Multiscale coupling of compliant and rigid walls blood flow models, Int. J. Numer. Methods in Fluids, 2016, vol. 82, no. 12, pp. 799–817.
  21. Quarteroni, A., Tuveri, M., and Veneziani, A., Computational vascular fluid dynamics: problems, models and methods, Comput. Visualisation Sci., 2000, vol. 2, pp. 163–197.
  22. Vassilevski, Y., Olshanskii, M., Simakov, S., Kolobov, A., and Danilov, A., Personalized Computational Hemodynamics: Models, Methods, and Applications for Vascular Surgery and Antitumor Therapy, Academic Press, 2020.
  23. Danilov, A., Lozovskiy, A., Olshanskii, M., and Vassilevski, Yu., A finite element method for the Navier–Stokes equations in moving domain with application to hemodynamics of the left ventricle, Russ. J. Numer. Anal. Math. Modelling, 2017, vol. 32, no. 4, pp. 225–236.
  24. Landau, L.D. and Lifshitz, E.M., Teoreticheskaya fizika. T. VI. Gidrodinamika (Course of Theoretical Physics. Vol. VI. Hydrodynamics), Moscow: Nauka, 1986.
  25. Goloviznin, V.M., Zaitsev, M.A., Karabasov, S.A., and Korotkin, I.A., Novyye algoritmy vychislitel’noy gidrodinamiki dlya mnogoprotsessornykh vychislitel’nykh kompleksov (New CFD Algorithms for Multiprocessor Computer Systems), Moscow: MSU Press, 2013.
  26. Goloviznin, V.M. and Karabasov, S.A., Nonlinear correction of Cabaret scheme, Mat. Model. 1998, vol. 10, no. 12, pp. 107–123.

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies