СУЩЕСТВОВАНИЕ И ЕДИНСТВЕННОСТЬ СИЛЬНЫХ РЕШЕНИЙ СТОХАСТИЧЕСКИХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ СМЕШАННОГО ТИПА, УПРАВЛЯЕМЫХ ДРОБНЫМИ БРОУНОВСКИМИ ДВИЖЕНИЯМИ С ИНДЕКСАМИ XЕРСТА 𝐻 > 1/4

Обложка

Цитировать

Полный текст

Аннотация

Исследована проблема однозначной разрешимости задачи Коши для стохастического дифференциального уравнения смешанного типа, управляемого стандартными и дробными броуновскими движениями с показателем Херста 𝐻 > 1/4. Доказана теорема существования и единственности сильных решений таких уравнений.

Об авторах

М. М Васьковский

Белорусский государственный университет

Email: vaskovskii@bsu.by
Минск

П. П Стрюк

Белорусский государственный университет

Email: pavel.stryouk@gmail.com
Минск

Список литературы

  1. Stochastic calculus for fractional Brownian motion and applications / F. Biagini, Y. Hu, B. Oksendal, T. Zhang. — London : Springer-Verlag, 2008.
  2. Mishura, Yu.S. Stochastic calculus for fractional Brownian motion and related processes / Yu.S. Mishura. — Berlin ; Heidelberg : Springer-Verlag, 2008.
  3. Guerra, J. Stochastic differential equations driven by fractional Brownian motion and standard Brownian motion / J. Guerra, D. Nualart // Stochastic Anal. Appl. — 2008. — V. 26, № 5. — P. 1053–1075.
  4. Mishura, Y.S. Existence and uniqueness of the solution of stochastic differential equation involving Wiener process and fractional Brownian motion with Hurst index 𝐻 >1/2 / Y.S. Mishura, G.M. Shevchenko // Communications in Statistics. Theory and Methods. — 2011. — V. 40, № 19–20. — P. 3492–3508.
  5. Леваков, А.А. Существование слабых решений стохастических дифференциальных уравнений со стандартным и дробным броуновскими движениями и с разрывными коэффициентами / А.А. Леваков, М.М. Васьковский // Дифференц. уравнения. — 2014. — Т. 50, № 2. — С. 187–200.
  6. Леваков, А.А. Существование решений стохастических дифференциальных включений со стандартным и дробным броуновскими движениями / А.А. Леваков, М.М. Васьковский // Дифференц. уравнения. — 2015. — Т. 51, № 8. — С. 997–1003.
  7. Леваков, А.А. Свойства решений стохастических дифференциальных уравнений со стандартным и дробным броуновскими движениями / А.А. Леваков, М.М. Васьковский // Дифференц. уравнения. — 2016. — Т. 52, № 8. — С. 1011–1019.
  8. Васьковский, М.М. Устойчивость и притяжение решений нелинейных стохастических дифференциальных уравнений со стандартным и дробным броуновскими движениями / М.М. Васьковский // Дифференц. уравнения. — 2017. — Т. 53, № 2. — С. 160–173.
  9. Леваков, А.А. Стохастические дифференциальные уравнения и включения / А.А. Леваков, М.М. Васьковский. — Минск : БГУ, 2019.
  10. Nualart, D. Differential equations driven by fractional Brownian motion / D. Nualart, A. Rascanu // Collectanea Mathematica. — 2002. — V. 53, № 1. — P. 55–81.
  11. Lyons, T. Differential equations driven by rough signals / T. Lyons // Revista Matematica Iberoamericana. — 1998. — V. 14, № 2. — P. 215–310.
  12. Gubinelli, M. Controlling rough paths / M. Gubinelli // J. Funct. Anal. — 2004. — V. 216, № 1. — P. 86–140.
  13. Friz, P. A Course on Rough Paths with an Introduction to Regularity Structures / P. Friz, M. Hairer. — Cham : Springer, 2014.
  14. Vaskouski, M. Asymptotic expansions of solutions of stochastic differential equations driven by multivariate fractional Brownian motions having Hurst indices greater than 1/3 / M. Vaskouski, I. Kachan // Stochastic Anal. Appl. — 2018. — V. 36, № 6. — P. 909–931.
  15. Васьковский, М.М. О конечности моментов решений стохастических дифференциальных уравнений смешанного типа, управляемых стандартными и дробными броуновскими движениями / М.М. Васьковский, А.А. Карпович // Дифференц. уравнения. — 2021. — Т. 57, № 2. — С. 162–168.
  16. Coutin, L. Stochastic analysis, rough path analysis and fractional Brownian motions / L. Coutin, Z. Qian // Probability Theory Related Fields. — 2002. — V. 122, № 1. — P. 108–140.
  17. Васьковский, М.М. Существование и единственность решений дифференциальных уравнений, слабо управляемых грубыми траекториями с произвольным положительным показателем Гёльдера / М.М. Васьковский // Дифференц. уравнения. — 2021. — Т. 57, № 10. — С. 1305–1317.
  18. Васьковский, М.М. Устойчивость решений стохастических дифференциальных уравнений, слабо управляемых грубыми траекториями с произвольным положительным показателем Гёльдера / М.М. Васьковский // Дифференц. уравнения. — 2021. — Т. 57, № 11. — С. 1443–1449.
  19. Васьковский, М.М. Аналог уравнений Колмогорова для одномерных стохастических дифференциальных уравнений, управляемых дробным броуновскими движением с показателем Херста 𝐻 ∈ (0, 1) / М.М. Васьковский // Дифференц. уравнения. — 2022. — Т. 58, № 1. — С. 11–16.
  20. Harang, F.A. On the theory of rough paths, fractional and multifractional Brownian motion with applications to finance : dissertation . . . master of mathematics / F.A. Harang. — Oslo, 2015. — 83 p.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).