STABILIZATION OF STATE FEEDBACK LINEARIZABLE DYNAMICAL SYSTEMS UNDER STATE CONSTRAINTS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The problem of stabilizing the origin is solved for dynamical systems written in a form that admits state feedback linearization, taking into account the magnitude constraints on the state variable values. Based on known results on the possibility of obtaining identical control laws when using the integrator backstepping and the state feedback linearization methods to design stabilizing feedbacks, sufficient conditions are proposed for the gain coefficients and roots of the characteristic polynomial of the closed-loop system that ensure fulfillment of the specified constraints. The derived conditions guaranteeing that the constraints hold are based on the results obtained using the integrator backstepping method combined with logarithmic barrier Lyapunov functions. As an example, a solution to the problem of a generalized coordinate regulation is considered for a mechanical system, whose dynamics with respect to the selected generalized variable can be represented as a chain of fourth-order integrators, taking into account the constraints on the values of the generalized coordinate, velocity, acceleration, and jerk.

About the authors

A. E Golubev

Ishlinsky Institute for Problems in Mechanics of RAS

Email: v-algolu@hotmail.com
Moscow, Russia

References

  1. Krsti’c, M. Nonlinear and Adaptive Control Design / M. Krsti’c, I. Kanellakopoulos, P.V. Kokotovi’c. — New York : John Wiley and Sons, 1995. — 592 p.
  2. Ngo, K.B. Integrator backstepping using barrier functions for systems with multiple state constraints / K.B. Ngo, R. Mahony, Z.P. Jiang // Proceed. 44th IEEE Conf. on Decision and Control, and the European Control Conf. — Seville, Spain, 2005. — P. 8306–8312.
  3. Tee, K.P. Barrier Lyapunov functions for the control of output-constrained nonlinear systems / K.P. Tee, S.S. Ge, E.H. Tay // Automatica. — 2009. — V. 45, № 4. — P. 918–927.
  4. Tang, Z.L. Tangent barrier Lyapunov functions for the control of output-constrained nonlinear systems / Z.L. Tang, K.P. Tee, W. He // IFAC Proceed. Volumes. — 2013. — V. 46, № 20. — P. 449–455.
  5. Niu, B. Barrier Lyapunov functions for the output tracking control of constrained nonlinear switched systems / B. Niu, J. Zhao // Systems and Control Letters. — 2013. — V. 62, № 10. — P. 963–971.
  6. Xu, J. Adaptive finite-time fault-tolerant tracking control for a class of MIMO nonlinear systems with output constraints / J. Xu // Intern. J. of Robust and Nonlin. Control. — 2017. — V. 27, № 5. — P. 722–741.
  7. Sachan, K. Barrier Lyapunov function based output-constrained control of nonlinear Euler–Lagrange systems / K. Sachan, R. Padhi // Proceed. 15th Intern. Conf. on Control, Automation, Robotics and Vision (ICARCV). — Singapore, 2018. — P. 686–691.
  8. D UAV navigation with moving-obstacle avoidance using barrier Lyapunov functions / E. Garg, T. Barrier Lyapunov function based controller design for Euler–Lagrange systems with reduced control effort / T. Garg, S.B. Roy // IFAC-PapersOnLine. — 2020. — V. 53, № 1. — P. 459–464.
  9. Barrier Lyapunov function-based fixed-time FTC for high-order nonlinear systems with predefined tracking accuracy / X. Wang, J. Xu, M. Lv [et al.] // Nonlinear Dynamics. — 2022. — V. 110. — P. 381–394.
  10. Barrier Lyapunov function-based finite-time reliable trajectory tracking control of fixed-wing UAV with error constraints / Y. Xu, R. Zhou, Z. Yu [et al.] // IFAC-PapersOnLine. — 2022. — V. 55, № 6. — P. 597–602.
  11. Hosseinnajad, A. Barrier Lyapunov function-based backstepping controller design for path tracking of autonomous vehicles / A. Hosseinnajad, N. Mohajer, S. Nahavandi // J. Intell. Robot. Syst. — 2024. — V. 110. — Art. 118.
  12. Голубев, А.Е. Стабилизация нелинейных динамических систем с учётом ограничений на состояния при помощи метода бэкстеппинга / А.Е. Голубев // Дифференц. уравнения. — 2024. — Т. 60, № 5. — C. 660–671.
  13. Golubev, A.E., Backstepping stabilization of nonlinear dynamical systems under state constraints, Differ. Equat., 2024, vol. 60, no. 5, pp. 630–641.
  14. Голубев, А.Е. Стабилизация цепочки интеграторов произвольного порядка с учётом ограничений на состояние / А.Е. Голубев // Изв. РАН. Теория и системы управления. — 2025. — № 3. — C. 121–132.
  15. Golubev, A.E., Stabilization of chain of integrators under state constraints, J. Comput. Syst. Sci. Int., 2025, vol. 64, no. 3, pp. 482–495.
  16. Khalil, H.K. Nonlinear Control / H.K. Khalil. — New York : Prentice Hall, 2015. — 387 p.
  17. Голубев, А.Е. Построение и стабилизация траекторий пространственного движения квадрокоптера / А.Е. Голубев, А.А. Хорошева, С.А. Васенин // Изв. РАН. Теория и системы управления. — 2025. — № 2. — C. 109–124.
  18. Golubev, A.E., Khorosheva, A.A., and Vasenin, S.A., Construction and tracking of quadcopter spatial motion trajectories, J. Comput. Syst. Sci. Int., 2025, vol. 64, no. 2, pp. 259–274.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).