GENERALIZED SOLUTIONS OF HAMILTON-JACOBI EQUATIONS WITH FRACTIONAL COINVARIANT DERIVATIVES AND TIME-MEASURABLE HAMILTONIAN

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper is devoted to the study of generalized in the minimax sense solutions of a Cauchy problem for a (path-dependent) Hamilton-Jacobi equation with fractional coinvariant derivatives under a right-end boundary condition in the case where the Hamiltonian of the equation depends on the time variable in a measurable way. Theorems on the existence and uniqueness of the minimax solution and a theorem on the continuous dependence of this solution on variations of the Hamiltonian and boundary functional are proved. An application of the obtained results to the study of a differential game for a dynamical system described by a differential equation with a Caputo fractional derivative is given.

About the authors

M. I Gomoyunov

N.N. Krassovskii Institute of Mathematics and Mechanics of the Ural Branch of RAS; Ural Federal University

Email: m.i.gomoyunov@gmail.com
Yekaterinburg

References

  1. Gomoyunov, M.I. Dynamic programming principle and Hamilton-Jacobi-Bellman equations for fractional-order systems / M.I. Gomoyunov // SIAM J. Control Optim. — 2020. — V. 58, № 6. — P. 3185–3211.
  2. Gomoyunov, M.I. Differential games for fractional-order systems: Hamilton-Jacobi-Bellman–Isaacs equation and optimal feedback strategies / M.I. Gomoyunov // Mathematics. — 2021. — V. 9, № 14. — Art. 1667.
  3. Самко, С.Г. Интегралы и производные дробного порядка и некоторые их приложения / С.Г. Самко, А.А. Килбас, О.И. Маричев. — Минск : Наука и техника, 1987. — 688 с.
  4. Kilbas, A.A. Theory and Applications of Fractional Differential Equations / A.A. Kilbas, H.M. Srivastava, J.J. Trujillo. — Amsterdam : Elsevier, 2006. — 523 p.
  5. Diethelm, K. The Analysis of Fractional Differential Equations. An Application-Oriented Exposition using Differential Operators of Caputo Type / K. Diethelm. — Berlin : Springer, 2010. — 247 p.
  6. Субботин, А.И. Минимальные неравенства и уравнения Гамильтона–Якоби / А.И. Субботин. — М. : Наука, 1991. — 216 с.
  7. Subbotin, A.I. Generalized Solutions of First-order PDEs. The Dynamical Optimization Perspective / A.I. Subbotin. — Boston : Birkhäuser, 1995. — 312 p.
  8. Crandall, M.G. Viscosity solutions of Hamilton-Jacobi equations / M.G. Crandall, P.-L. Lions // Trans. Amer. Math. Soc. — 1983. — V. 277, № 1. — P. 1–42.
  9. Гомоюнов, М.И. Минимальные решения однородных уравнений Гамильтона–Якоби с концариантными производными дробного порядка / М.И. Гомоюнов // Тр. Ин-та математики и механики УрО РАН. — 2020. — Т. 26, № 4. — С. 106–125.
  10. Gomoyunov, M.I. Minimax solutions of Hamilton-Jacobi equations with fractional coinvariant derivatives / M.I. Gomoyunov // ESAIM: Control Optim. Calc. Var. — 2022. — V. 28. — Art. 23.
  11. Gomoyunov, M.I. On viscosity solutions of path-dependent Hamilton-Jacobi-Bellman-Isaacs equations for fractional-order systems / M.I. Gomoyunov // J. Differ. Equat. — 2024. — V. 399. — P. 335–362.
  12. Kaise, H. Comparison theorems of viscosity solutions for Hamilton-Jacobi equations with co-invariant derivatives of fractional orders / H. Kaise, Y. Masuda // Pure Appl. Funct. Anal. — 2024. — V. 9, № 3. — P. 705–739.
  13. Гомоюнов, М.И. Минимальные решения уравнений Гамильтона–Якоби в задачах динамической оптимизации наследственных систем / М.И. Гомоюнов, Н.Ю. Лукоянов // Успехи мат. наук. — 2024. — Т. 79, № 2. — С. 43–144.
  14. Tran, D.V. The Characteristic Method and its Generalizations for First-Order Nonlinear Partial Differential Equations / D.V. Tran, T. Mikio, D.T.S. Nguyen. — Boca Raton : Chapman & Hall/CRC, 2000. — 237 p.
  15. Vinter, R.B. Hamilton-Jacobi theory for optimal control problems with data measurable in time / R.B. Vinter, P. Wolenski // SIAM J. Control Optim. — 1990. — V. 28, № 6. — P. 1404–1419.
  16. Bandini, E. Path-dependent Hamilton-Jacobi equations with u-dependence and time-measurable Hamiltonians / E. Bandini, C. Keller // Appl. Math. Optim. — 2025. — V. 91, № 2. — Art. 34.
  17. Ishii, H. Hamilton-Jacobi equations with discontinuous Hamiltonians on arbitrary open sets / H. Ishii // Bull. Fac. Sci. Eng. Chuo Univ. — 1985. — V. 28. — P. 33–77.
  18. Lions, P.-L. Remarks on Hamilton-Jacobi equations with measurable time-dependent Hamiltonians / P.-L. Lions, B. Perthame // Nonlin. Anal. — 1987. — V. 11, № 5. — P. 613–621.
  19. Barron, E.N. Generalized viscosity solutions for Hamilton-Jacobi equations with time-measurable Hamiltonians / E.N. Barron, R. Jensen // J. Differ. Equat. — 1987. — V. 68, № 1. — P. 10–21.
  20. Briani, A. A density approach to Hamilton-Jacobi equations with t-measurable Hamiltonians / A. Briani, F. Rampazzo // Nonlin. Differ. Equat. Appl. — 2005. — V. 12, № 1. — P. 71–91.
  21. Натансон, И.П. Теория функций вещественной переменной / И.П. Натансон. — 3-e изд. — М. : Наука, 1974. — 480 с.
  22. Kucia, A. Scorza Dragoni type theorems / A. Kucia // Fund. Math. — 1991. — V. 138, № 3. — P. 197–203.
  23. Гомоюнов, М.И. К теории дифференциальных включений с дробными производными Капуго / М.И. Гомоюнов // Дифференц. уравнения. — 2020. — Т. 56, № 11. — С. 1419–1432.
  24. Gomoyunov, M.I. Solution to a zero-sum differential game with fractional dynamics via approximations / M.I. Gomoyunov // Dyn. Games Appl. — 2020. — V. 10, № 2. — P. 417–443.
  25. Bettiol, P. Principles of Dynamic Optimization / P. Bettiol, R.B. Vinter. — Cham : Springer, 2024. — 769 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).