ULTIMATE BOUNDS, EQUILIBRIUM POINTS AND BIFURCATIONS IN A THREE-DIMENSIONAL CANCER MODEL
- Authors: Krishchenko A.P1
-
Affiliations:
- Bauman Moscow State Technical University
- Issue: Vol 61, No 11 (2025)
- Pages: 1460-1473
- Section: ORDINARY DIFFERENTIAL EQUATIONS
- URL: https://journals.rcsi.science/0374-0641/article/view/352955
- DOI: https://doi.org/10.7868/S3034503025110029
- ID: 352955
Cite item
Abstract
A nonlinear system describing the dynamics of cancer growth is investigated. For all values of the system parameters, the existence of an attractor is proved and positively invariant sets containing it are found. The estimates of ultimate bounds are calculated. All equilibrium points are found, the conditions of their existence and bifurcation are proved. In the parameter space of the system, sets are found where these conditions are fulfilled. Examples of constructing intersections of these sets with two-dimensional planes are given. Other characteristics associated with the appearance of periodic trajectories and chaotic dynamics are calculated.
References
- de Pillis, L.G. The dynamics of an optimally controlled tumor model: a case study / L.G. de Pillis, A. Radunskaya // Math. Comput. Model. — 2003. — V. 37. — P. 1221–1244.
- Itik, M. Chaos in a three-dimensional cancer model / M. Itik, S.P. Bank // Intern. J. of Bifurcation and Chaos. — 2010. — V. 20, № 1. — P. 71–79.
- Starkov, K.E. On the global dynamics of one cancer tumour growth model / K.E. Starkov, A.P. Krishchenko // Commun. Nonlin. Sci. Numer. Simul. — 2014. — V. 19, № 5. — P. 1486–1495.
- Bounding the dynamics of a chaotic-cancer mathematical model / P.A. Valle, L.N. Coria, D. Gamboa, C. Plata // Math. Problems in Engineering. — 2018. — Art. 9787015.
- Routes to chaos in a three-dimensional cancer model / E. Karatetskaia, V. Koryakin, K. Soldatkin, A. Kazakov // Regul. Chaotic Dyn. — 2024. — V. 29, № 5. — P. 777–793.
- Шильников, Л.П. Об одном случае существования счётного множества периодических движений / Л.П. Шильников // Докл. АН СССР. — 1965. — Т. 160, № 3. — C. 558–561.
- Шильников, Л.П. Теория бифуркаций динамических систем и опасные границы / Л.П. Шильников // Докл. АН СССР. — 1975. — Т. 224, № 5. — C. 1046–1049.
- Крищенко, А.П. Локализация инвариантных комплектов динамических систем / А.П. Крищенко // Дифференц. уравнения. — 2005. — Т. 41, № 12. — C. 1597–1604.
- Крищенко, А.П. Итерационные последовательности метода локализации / А.П. Крищенко // Дифференц. уравнения. — 2024. — Т. 60, № 11. — C. 1566–1570.
- Khalil, H.K. Nonlinear Systems / H.K. Khalil. — 3rd ed. — Upper Saddle River : Prentice Hall, 2002. — 750 p.
- Арнольд, В.И. Обыкновенные дифференциальные уравнения / В.И. Арнольд. — М. : МЦНМО, 2012. — 341 c.
Supplementary files


