REGULATORS OF FINITE STABILIZATION FOR HYBRID LINEAR CONTINUOUS-DISCRETE SYSTEMS
- 作者: Khartovskii V.E1
-
隶属关系:
- Yanka Kupala State University of Grodno
- 期: 卷 60, 编号 10 (2024)
- 页面: 1394-1406
- 栏目: CONTROL THEORY
- URL: https://journals.rcsi.science/0374-0641/article/view/270542
- DOI: https://doi.org/10.31857/S0374064124100088
- EDN: https://elibrary.ru/JTEHKQ
- ID: 270542
如何引用文章
详细
参考
- Vasil’yev, S.N. and Malikov, A.I., On some results on the stability of switchable and hybrid systems, in Aktual’nyye problemy mekhaniki sploshnoy sredy. K 20-letiyu IMM KazNTS RAN, Kazan: Foliant, 2011. vol. 1, pp. 23–81.
- Gurman, V.I., Models and optimality conditions for hybrid controlled systems, J. Comput. Syst. Sci. Int., 2004, vol. 43, no. 4, pp. 560–565.
- Cassandras, C.G. Optimal control of a class of hybrid systems / C.G. Cassandras, D.L. Pepyne, Y. Wardi // IEEE Trans. Automat. Control. — 2001. — V. 46, № 3. — P. 398-415.
- Savkin, A.V. Hybrid Dynamical Systems: Controller and Sensor Switching Problems / A.V. Savkin, R.J. Evans. — Boston : Birkhauser, 2002. — 153 p.
- Bortakovsky, A.S. and Uryupin, I.V., Optimization of switchable systems’ trajectories, J. Comput. Syst. Sci. Int., 2021, vol. 60, no. 5, pp. 701–718.
- Bortakovskiy, A.S., Optimizatsiya pereklyuchayushchikh sistem (Optimization of Switching Systems), Moscow: Izd-vo MAI, 2016.
- Maksimov, V.P., Continuous-discrete dynamic models, Ufa Math. J., 2021, vol. 13, no. 3, pp. 95–103.
- Baturin, V.A., Goncharova E.V., and Maltugueva, N.S., Iterative methods for solution of problems of optimal control of logic-dynamic systems, J. Comput. Syst. Sci. Int., 2010, vol. 49, no. 5, pp. 731–739.
- Gabasov, R., Kirillova, F.M., and Paulianok, N.S., Optimal control of some hybrid systems, J. Comput. Syst. Sci. Int., 2010, no. 49, pp. 872–882.
- Agranovich, G. Observer for discrete-continuous LTI systems with continuous-time measurements / G. Agranovich // Funct. Differ. Equat. — 2011. — № 18 (1). — P. 3-12.
- Branicky, M. A unified framework for hybrid control: model and optimal control theory / M. Branicky, V. Borkar, S. Mitter // IEEE Trans. Automat. Control. — 1998. — V. 43, № 1. — P. 31-45.
- De la Sen, M. On the controller synthesis for linear hybrid systems / M. De la Sen // IMA J. Math. Control and Information. — 2001. — № 18 (4). — P. 503-529.
- Marchenko, V.M., Hybrid discrete-continuous systems. Controllability and reachability, Differ. Equat., 2013, vol. 49, no. 1, pp. 112–125.
- Marchenko, V.M., Observability of hybrid discrete-continuous systems, Differ. Equat., 2013, vol. 49, no. 11, pp. 1389–1404.
- Metel’skii, A.V. and Khartovskii, V.E., Synthesis of damping controllers for the solution of completely regular differential-algebraic delay systems, Differ. Equat., 2017, vol. 53, no. 4, pp. 539–550.
- Khartovskii, V.E., Controlling the spectrum of linear completely regular differential-algebraic systems with delay, J. Comput. Syst. Sci. Int., 2020, vol. 59, no. 1, pp. 19–38.
- Khartovskii, V.E., Designing asymptotic observers for linear completely regular differential algebraic systems with delay, Izv. In-ta Matematiki i Informatiki Udmurtsk. Gos. Un-ta, 2022, vol. 60, pp. 114–136.
- Fomichev, V.V., Sufficient conditions for the stabilization of linear dynamical systems differential equations, Differ. Equat., 2015, vol. 51, no. 11, pp. 1512–1518.
- Khartovskii, V.E., Spectral reduction of linear systems of the neutral type, Differ. Equat., 2017, vol. 53, no. 3, pp. 366–381.
- Metel’skii, A.V., Separation of identifiable and controllable component of the state of a dynamic system with delay, Differ. Equat., 1992, vol. 28, no. 6, pp. 972–984.
补充文件
