Gradient in the problem of controlling processes described by linear pseudohyperbolic equations

Cover Page

Cite item

Full Text

Abstract

The paper considers the problem of controlling processes, the mathematical model of which is an initial-boundary value problem for a pseudohyperbolic linear differential equation of high order in the spatial variable and second order in the time variable. The pseudohyperbolic equation is a generalization of the ordinary hyperbolic equation, which is typical in vibration theory. As examples, models of vibrations of moving elastic materials were considered. For model problems, an energy identity is established, and conditions for the uniqueness of a solution are formulated. As an optimization problem, we considered the problem of controlling the right side in order to minimize the quadratic integral functional, which evaluates the proximity of the solution to the objective function. From the original functional a transition was made to the majorant functional, for which the corresponding upper bound was established. An explicit expression for the gradient of this functional is obtained, and conjugate initial-boundary value problems are derived.

Full Text

1. Введение. Постановка задачи

Пусть L j 2 n j (z)[z] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaa0baaSqaaiaadQgaaeaaca aIYaGaamOBamaaBaaabaGaamOAaaqabaaaaOGaaGikaiaadQhacaaI PaGaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiq aacqWFDeIucaaIBbGaamOEaiaai2faaaa@47DD@ , здесь n j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGUbWaaSbaaSqaaiaadQgaaeqaaO GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFveItaaa@4004@ , j{1,2,3} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGQbGaeyicI4SaaG4Eaiaaigdaca aISaGaaGOmaiaaiYcacaaIZaGaaGyFaaaa@39DC@ . Рассмотрим линейное дифференциальное уравнение с постоянными коэффициентами

L 1 2 n 1 ( x ) 2 u t 2 + L 2 2 n 2 ( x ) u t + L 3 2 n 3 ( x )u=F(x,t). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaa0baaSqaaiaaigdaaeaaca aIYaGaamOBamaaBaaabaGaaGymaaqabaaaaOGaaGikamaalaaabaGa eyOaIylabaGaeyOaIyRaamiEaaaacaaIPaWaaSaaaeaacqGHciITda ahaaWcbeqaaiaaikdaaaGccaWG1baabaGaeyOaIyRaamiDamaaCaaa leqabaGaaGOmaaaaaaGccqGHRaWkcaWGmbWaa0baaSqaaiaaikdaae aacaaIYaGaamOBamaaBaaabaGaaGOmaaqabaaaaOGaaGikamaalaaa baGaeyOaIylabaGaeyOaIyRaamiEaaaacaaIPaWaaSaaaeaacqGHci ITcaWG1baabaGaeyOaIyRaamiDaaaacqGHRaWkcaWGmbWaa0baaSqa aiaaiodaaeaacaaIYaGaamOBamaaBaaabaGaaG4maaqabaaaaOGaaG ikamaalaaabaGaeyOaIylabaGaeyOaIyRaamiEaaaacaaIPaGaamyD aiaai2dacaWGgbGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaIUa aaaa@6304@      (1)

В нём операторы L j 2 n j (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaa0baaSqaaiaadQgaaeaaca aIYaGaamOBamaaBaaabaGaamOAaaqabaaaaOGaaGikaiabgkGi2kab gkGi2kaadIhacaaIPaaaaa@3BA1@  можно рассматривать как линейные дифференциальные операторы порядка 2n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIYaGaamOBaaaa@336C@ , n=maxj=1, 2, 3nj, которые порождаются соответствующими многочленами от одной переменной и определяются соотношениями

L j 2n (z)= k=0 2n p j,k z k , p j,k , k=0 2n p j,k 0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaa0baaSqaaiaadQgaaeaaca aIYaGaamOBaaaakiaaiIcacaWG6bGaaGykaiaai2dadaaeWbqabSqa aiaadUgacaaI9aGaaGimaaqaaiaaikdacaWGUbaaniabggHiLdGcca WGWbWaaSbaaSqaaiaadQgacaaISaGaam4AaaqabaGccaWG6bWaaWba aSqabeaacaWGRbaaaOGaaGilaiaaywW7caWGWbWaaSbaaSqaaiaadQ gacaaISaGaam4AaaqabaGccqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3y SLgzG0uy0HgiuD3BaGabaiab=1risjaaiYcacaaMf8+aaabCaeqale aacaWGRbGaaGypaiaaicdaaeaacaaIYaGaamOBaaqdcqGHris5aOWa aqWaaeaacaWGWbWaaSbaaSqaaiaadQgacaaISaGaam4Aaaqabaaaki aawEa7caGLiWoacqGHGjsUcaaIWaGaaGilaaaa@69EA@

а при z=/x имеем

  L j 2n ( x )= k=0 2n p j,k k x k , p j,k . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaa0baaSqaaiaadQgaaeaaca aIYaGaamOBaaaakiaaiIcadaWcaaqaaiabgkGi2cqaaiabgkGi2kaa dIhaaaGaaGykaiaai2dadaaeWbqabSqaaiaadUgacaaI9aGaaGimaa qaaiaaikdacaWGUbaaniabggHiLdGccaWGWbWaaSbaaSqaaiaadQga caaISaGaam4AaaqabaGcdaWcaaqaaiabgkGi2oaaCaaaleqabaGaam 4AaaaaaOqaaiabgkGi2kaadIhadaahaaWcbeqaaiaadUgaaaaaaOGa aGilaiaaywW7caWGWbWaaSbaaSqaaiaadQgacaaISaGaam4Aaaqaba GccqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGab aiab=1risjaai6caaaa@5EB3@

Решение уравнения (1) удовлетворяет краевым условиям

αkkuxk|x=0=0,βkkuxk|x=l=0,k=0,2n1¯,    (2)

и начальным условиям

u | t=0 = u 0 (x), u t | t=0 = u 1 (x). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG1bGaaGiFamaaBaaaleaacaWG0b GaaGypaiaaicdaaeqaaOGaaGypaiaadwhadaWgaaWcbaGaaGimaaqa baGccaaIOaGaamiEaiaaiMcacaaISaGaaGzbVpaalaaabaGaeyOaIy RaamyDaaqaaiabgkGi2kaadshaaaGaaGiFamaaBaaaleaacaWG0bGa aGypaiaaicdaaeqaaOGaaGypaiaadwhadaWgaaWcbaGaaGymaaqaba GccaaIOaGaamiEaiaaiMcacaaIUaaaaa@4C15@     (3)

При этом числа α k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHXoqydaWgaaWcbaGaam4Aaaqaba aaaa@3478@ , β k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHYoGydaWgaaWcbaGaam4Aaaqaba aaaa@347A@  не все равны нулю. Отметим, что выполняются условия согласования на краях, а именно, условиям (2) удовлетворяют производные по переменной t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG0baaaa@32B6@  от функции u(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C8@  и функции из начальных условий.

Стоит отметить, что начально-краевую задачу (1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@ (3) можно рассматривать как обобщённую математическую модель колебательных процессов самой различной природы. В работе [1] приводится обзор различных математических моделей колебаний упругих материалов, для них устанавливается теорема единственности решения задачи Коши. В [2, 3] предлагаются алгоритмы для построения численных решений начально-краевой задачи для линейного и нелинейного псевдогиперболических уравнений. В статье [4] применяется проекционный метод Галёркина для линейного псевдогиперболического уравнения второго порядка по пространственной переменной с переменными коэффициентами. Важными результатами этой работы являются теорема единственности и оценки погрешности численного метода. Ниже рассмотрим конкретные примеры, в которых будем считать, что внешнего воздействия на колеблющуюся систему не оказывается, т.е. F(x,t)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGgbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaaGimaaaa@381A@  (описание числовых параметров соответствующих моделей можно найти в источниках из предложенного списка литературы).

Пример 1 [уравнение колебаний струны]. Пусть n=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGUbGaaGypaiaaigdaaaa@3432@ , многочлены L 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaaSbaaSqaaiaaigdaaeqaaO GaaGilaaaa@3435@   L 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaaSbaaSqaaiaaikdaaeqaaO GaaGilaaaa@3436@   L 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaaSbaaSqaaiaaiodaaeqaaa aa@3377@  определяются соотношениями

L12n(z)=1,L22n(z)=0,L32n(z)=a2z2.

Тогда получаем (см. [5, 6]) уравнение

2ut2a22ux2=0.

Пример 2 [уравнение колебаний балки]. Пусть n=2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGUbGaaGypaiaaikdaaaa@3433@ , многочлены L 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaaSbaaSqaaiaaigdaaeqaaO GaaGilaaaa@3435@   L 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaaSbaaSqaaiaaikdaaeqaaO GaaGilaaaa@3436@   L 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaaSbaaSqaaiaaiodaaeqaaa aa@3377@  определяются соотношениями

L 1 2n (z)=1, L 2 2n (z)=0, L 3 2n (z)= A 2 z 4 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaa0baaSqaaiaaigdaaeaaca aIYaGaamOBaaaakiaaiIcacaWG6bGaaGykaiaai2dacaaIXaGaaGil aiaaywW7caWGmbWaa0baaSqaaiaaikdaaeaacaaIYaGaamOBaaaaki aaiIcacaWG6bGaaGykaiaai2dacaaIWaGaaGilaiaaywW7caWGmbWa a0baaSqaaiaaiodaaeaacaaIYaGaamOBaaaakiaaiIcacaWG6bGaaG ykaiaai2dacaWGbbWaaWbaaSqabeaacaaIYaaaaOGaamOEamaaCaaa leqabaGaaGinaaaakiaai6caaaa@4FF9@

Тогда (см. [5, 6])

2 u t 2 + A 2 4 u x 4 =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiaadwhaaeaacqGHciITcaWG0bWaaWbaaSqabeaacaaI YaaaaaaakiabgUcaRiaadgeadaahaaWcbeqaaiaaikdaaaGcdaWcaa qaaiabgkGi2oaaCaaaleqabaGaaGinaaaakiaadwhaaeaacqGHciIT caWG4bWaaWbaaSqabeaacaaI0aaaaaaakiaai2dacaaIWaGaaGOlaa aa@4403@

Пример 3 [уравнение колебаний двутавровой балки] Пусть n=2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGUbGaaGypaiaaikdaaaa@3433@ , многочлены L 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaaSbaaSqaaiaaigdaaeqaaO GaaGilaaaa@3435@   L 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaaSbaaSqaaiaaikdaaeqaaO GaaGilaaaa@3436@   L 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaaSbaaSqaaiaaiodaaeqaaa aa@3377@  определяются соотношениями

L 1 2n (z)=1, L 2 2n (z)=0, L 3 2n (z)= a 2 z 2 + A 2 z 4 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaa0baaSqaaiaaigdaaeaaca aIYaGaamOBaaaakiaaiIcacaWG6bGaaGykaiaai2dacaaIXaGaaGil aiaaywW7caWGmbWaa0baaSqaaiaaikdaaeaacaaIYaGaamOBaaaaki aaiIcacaWG6bGaaGykaiaai2dacaaIWaGaaGilaiaaywW7caWGmbWa a0baaSqaaiaaiodaaeaacaaIYaGaamOBaaaakiaaiIcacaWG6bGaaG ykaiaai2dacqGHsislcaWGHbWaaWbaaSqabeaacaaIYaaaaOGaamOE amaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadgeadaahaaWcbeqaai aaikdaaaGccaWG6bWaaWbaaSqabeaacaaI0aaaaOGaaGOlaaaa@5593@

Тогда (см. [7])

 2ut2a22ux2+A24ux4=0.

Пример 4 [уравнение Аллера MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@ Лыкова]. Простейшее псевдогиперболическое уравнение получается при n=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGUbGaaGypaiaaigdaaaa@3432@ , многочлены L 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaaSbaaSqaaiaaigdaaeqaaa aa@3375@ , L 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaaSbaaSqaaiaaikdaaeqaaa aa@3376@ , L 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaaSbaaSqaaiaaiodaaeqaaa aa@3377@  определяются соотношениями

L 1 2n (z)= A 1 , L 2 2n (z)=1 A 2 z 2 , L 3 2n (z)=D z 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaa0baaSqaaiaaigdaaeaaca aIYaGaamOBaaaakiaaiIcacaWG6bGaaGykaiaai2dacaWGbbWaaSba aSqaaiaaigdaaeqaaOGaaGilaiaaywW7caWGmbWaa0baaSqaaiaaik daaeaacaaIYaGaamOBaaaakiaaiIcacaWG6bGaaGykaiaai2dacaaI XaGaeyOeI0IaamyqamaaCaaaleqabaGaaGOmaaaakiaadQhadaahaa WcbeqaaiaaikdaaaGccaaISaGaaGzbVlaadYeadaqhaaWcbaGaaG4m aaqaaiaaikdacaWGUbaaaOGaaGikaiaadQhacaaIPaGaaGypaiabgk HiTiaadseacaWG6bWaaWbaaSqabeaacaaIYaaaaOGaaGOlaaaa@5589@

Имеем (см. [8])

A 1 2 u t 2 + u t A 2 3 u x 2 t D 2 2 u x 2 =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGbbWaaSbaaSqaaiaaigdaaeqaaO WaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWG1baabaGa eyOaIyRaamiDamaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWkdaWcaa qaaiabgkGi2kaadwhaaeaacqGHciITcaWG0baaaiabgkHiTiaadgea daahaaWcbeqaaiaaikdaaaGcdaWcaaqaaiabgkGi2oaaCaaaleqaba GaaG4maaaakiaadwhaaeaacqGHciITcaWG4bWaaWbaaSqabeaacaaI YaaaaOGaeyOaIyRaamiDaaaacqGHsislcaWGebWaaWbaaSqabeaaca aIYaaaaOWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWG 1baabaGaeyOaIyRaamiEamaaCaaaleqabaGaaGOmaaaaaaGccaaI9a GaaGimaiaai6caaaa@5734@

Пример 5 [уравнение колебаний движущейся струны]. Пусть n=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGUbGaaGypaiaaigdaaaa@3432@ , многочлены L 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaaSbaaSqaaiaaigdaaeqaaO GaaGilaaaa@3435@   L 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaaSbaaSqaaiaaikdaaeqaaO GaaGilaaaa@3436@   L 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaaSbaaSqaaiaaiodaaeqaaa aa@3377@  определяются соотношениями

  L 1 2n =1, L 2 2n =2 v 0 z, L 3 2n (z)= v 0 2 c 2 z 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaa0baaSqaaiaaigdaaeaaca aIYaGaamOBaaaakiaai2dacaaIXaGaaGilaiaaywW7caWGmbWaa0ba aSqaaiaaikdaaeaacaaIYaGaamOBaaaakiaai2dacaaIYaGaamODam aaBaaaleaacaaIWaaabeaakiaadQhacaaISaGaaGzbVlaadYeadaqh aaWcbaGaaG4maaqaaiaaikdacaWGUbaaaOGaaGikaiaadQhacaaIPa GaaGypamaabmaabaGaamODamaaDaaaleaacaaIWaaabaGaaGOmaaaa kiabgkHiTiaadogadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPa aacaWG6bWaaWbaaSqabeaacaaIYaaaaOGaaGOlaaaa@535B@

Тогда [9]

2 u t 2 +2 v 0 2 u xt + v 0 2 c 2 2 u x 2 =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiaadwhaaeaacqGHciITcaWG0bWaaWbaaSqabeaacaaI YaaaaaaakiabgUcaRiaaikdacaWG2bWaaSbaaSqaaiaaicdaaeqaaO WaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWG1baabaGa eyOaIyRaamiEaiabgkGi2kaadshaaaGaey4kaSYaaeWaaeaacaWG2b Waa0baaSqaaiaaicdaaeaacaaIYaaaaOGaeyOeI0Iaam4yamaaCaaa leqabaGaaGOmaaaaaOGaayjkaiaawMcaamaalaaabaGaeyOaIy7aaW baaSqabeaacaaIYaaaaOGaamyDaaqaaiabgkGi2kaadIhadaahaaWc beqaaiaaikdaaaaaaOGaaGypaiaaicdacaaIUaaaaa@54ED@     (4)

Пример 6 [уравнение колебаний движущегося упругого полотна]. Пусть n=2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGUbGaaGypaiaaikdaaaa@3433@ , многочлены L 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaaSbaaSqaaiaaigdaaeqaaO GaaGilaaaa@3435@   L 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaaSbaaSqaaiaaikdaaeqaaO GaaGilaaaa@3436@   L 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaaSbaaSqaaiaaiodaaeqaaa aa@3377@  определяются соотношениями

L 1 2n (z)=1, L 2 2n (z)=2 v 0 z, L 3 2n (z)= v 0 2 c 2 z 2 + D m z 4 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaa0baaSqaaiaaigdaaeaaca aIYaGaamOBaaaakiaaiIcacaWG6bGaaGykaiaai2dacaaIXaGaaGil aiaaywW7caWGmbWaa0baaSqaaiaaikdaaeaacaaIYaGaamOBaaaaki aaiIcacaWG6bGaaGykaiaai2dacaaIYaGaamODamaaBaaaleaacaaI WaaabeaakiaadQhacaaISaGaaGzbVlaadYeadaqhaaWcbaGaaG4maa qaaiaaikdacaWGUbaaaOGaaGikaiaadQhacaaIPaGaaGypamaabmaa baGaamODamaaDaaaleaacaaIWaaabaGaaGOmaaaakiabgkHiTiaado gadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacaWG6bWaaWba aSqabeaacaaIYaaaaOGaey4kaSYaaSaaaeaacaWGebaabaGaamyBaa aacaWG6bWaaWbaaSqabeaacaaI0aaaaOGaaGOlaaaa@5CC4@

Получаем [9]

2 u t 2 +2 v 0 2 u xt + v 0 2 c 2 2 u x 2 + D m 4 u x 4 =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiaadwhaaeaacqGHciITcaWG0bWaaWbaaSqabeaacaaI YaaaaaaakiabgUcaRiaaikdacaWG2bWaaSbaaSqaaiaaicdaaeqaaO WaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWG1baabaGa eyOaIyRaamiEaiabgkGi2kaadshaaaGaey4kaSYaaeWaaeaacaWG2b Waa0baaSqaaiaaicdaaeaacaaIYaaaaOGaeyOeI0Iaam4yamaaCaaa leqabaGaaGOmaaaaaOGaayjkaiaawMcaamaalaaabaGaeyOaIy7aaW baaSqabeaacaaIYaaaaOGaamyDaaqaaiabgkGi2kaadIhadaahaaWc beqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacaWGebaabaGaamyBaa aadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGinaaaakiaadwhaaeaa cqGHciITcaWG4bWaaWbaaSqabeaacaaI0aaaaaaakiaai2dacaaIWa GaaGOlaaaa@5E57@     (5)

Пример 7 [уравнение колебаний движущегося вязкоупругого полотна]. Пусть n=3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGUbGaaGypaiaaiodaaaa@3434@ , многочлены L 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaaSbaaSqaaiaaigdaaeqaaO GaaGilaaaa@3435@   L 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaaSbaaSqaaiaaikdaaeqaaO GaaGilaaaa@3436@   L 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaaSbaaSqaaiaaiodaaeqaaa aa@3377@  определяются соотношениями

L 1 2n (z)=1, L 2 2n (z)=2cz+γα z 4 , L 3 2n (z)=( c 2 1) z 2 +α z 4 +γαc z 5 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaa0baaSqaaiaaigdaaeaaca aIYaGaamOBaaaakiaaiIcacaWG6bGaaGykaiaai2dacaaIXaGaaGil aiaaywW7caWGmbWaa0baaSqaaiaaikdaaeaacaaIYaGaamOBaaaaki aaiIcacaWG6bGaaGykaiaai2dacaaIYaGaam4yaiaadQhacqGHRaWk cqaHZoWzcqaHXoqycaWG6bWaaWbaaSqabeaacaaI0aaaaOGaaGilai aaywW7caWGmbWaa0baaSqaaiaaiodaaeaacaaIYaGaamOBaaaakiaa iIcacaWG6bGaaGykaiaai2dacaaIOaGaam4yamaaCaaaleqabaGaaG OmaaaakiabgkHiTiaaigdacaaIPaGaamOEamaaCaaaleqabaGaaGOm aaaakiabgUcaRiabeg7aHjaadQhadaahaaWcbeqaaiaaisdaaaGccq GHRaWkcqaHZoWzcqaHXoqycaWGJbGaamOEamaaCaaaleqabaGaaGyn aaaakiaai6caaaa@66A5@

В результате получаем [9]

2 u t 2 +2c 2 u xt +γα 5 u x 4 t + c 2 1 2 u x 2 +α 4 u x 4 +γαc 5 u x 5 =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiaadwhaaeaacqGHciITcaWG0bWaaWbaaSqabeaacaaI YaaaaaaakiabgUcaRiaaikdacaWGJbWaaSaaaeaacqGHciITdaahaa WcbeqaaiaaikdaaaGccaWG1baabaGaeyOaIyRaamiEaiabgkGi2kaa dshaaaGaey4kaSIaeq4SdCMaeqySde2aaSaaaeaacqGHciITdaahaa WcbeqaaiaaiwdaaaGccaWG1baabaGaeyOaIyRaamiEamaaCaaaleqa baGaaGinaaaakiabgkGi2kaadshaaaGaey4kaSYaaeWaaeaacaWGJb WaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGymaaGaayjkaiaawMca amaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamyDaaqaai abgkGi2kaadIhadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSIaeqyS de2aaSaaaeaacqGHciITdaahaaWcbeqaaiaaisdaaaGccaWG1baaba GaeyOaIyRaamiEamaaCaaaleqabaGaaGinaaaaaaGccqGHRaWkcqaH ZoWzcqaHXoqycaWGJbWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaiw daaaGccaWG1baabaGaeyOaIyRaamiEamaaCaaaleqabaGaaGynaaaa aaGccaaI9aGaaGimaiaai6caaaa@744F@     (6)

Для дальнейшего изложения потребуется вспомогательное утверждение.

Лемма 1. Пусть функция u(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C8@  удовлетворяет краевым условиям (2). Тогда существуют числа α k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHXoqydaWgaaWcbaGaam4Aaaqaba aaaa@3478@ , β k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHYoGydaWgaaWcbaGaam4Aaaqaba aaaa@347A@  при k{0,1,...,n} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGRbGaeyicI4SaaG4Eaiaaicdaca aISaGaaGymaiaaiYcacaaIUaGaaGOlaiaai6cacaaISaGaamOBaiaa i2haaaa@3CEF@  такие, что имеют место тождества

  0 l 2k u x 2k u t dx= (1) k 2 0 l t ( k u x k ) 2 dx, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWGSb aaniabgUIiYdGcdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaiaa dUgaaaGccaWG1baabaGaeyOaIyRaamiEamaaCaaaleqabaGaaGOmai aadUgaaaaaaOWaaSaaaeaacqGHciITcaWG1baabaGaeyOaIyRaamiD aaaacaaMi8UaamizaiaadIhacaaI9aWaaSaaaeaacaaIOaGaeyOeI0 IaaGymaiaaiMcadaahaaWcbeqaaiaadUgaaaaakeaacaaIYaaaamaa pehabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakmaalaaabaGaey OaIylabaGaeyOaIyRaamiDaaaacaaIOaWaaSaaaeaacqGHciITdaah aaWcbeqaaiaadUgaaaGccaWG1baabaGaeyOaIyRaamiEamaaCaaale qabaGaam4AaaaaaaGccaaIPaWaaWbaaSqabeaacaaMb8UaaGOmaaaa kiaadsgacaWG4bGaaGilaaaa@6215@     (7)

0 l 2k+1 u x 2k+1 u t dx=( 1) k 0 l k+1 u x k+1 k+1 u t x k dx, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWGSb aaniabgUIiYdGcdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaiaa dUgacqGHRaWkcaaIXaaaaOGaamyDaaqaaiabgkGi2kaadIhadaahaa WcbeqaaiaaikdacaWGRbGaey4kaSIaaGymaaaaaaGcdaWcaaqaaiab gkGi2kaadwhaaeaacqGHciITcaWG0baaaiaayIW7caWGKbGaamiEai aai2dacaaIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaadUga aaGcdaWdXbqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGcdaWcaa qaaiabgkGi2oaaCaaaleqabaGaam4AaiabgUcaRiaaigdaaaGccaWG 1baabaGaeyOaIyRaamiEamaaCaaaleqabaGaam4AaiabgUcaRiaaig daaaaaaOWaaSaaaeaacqGHciITdaahaaWcbeqaaiaadUgacqGHRaWk caaIXaaaaOGaamyDaaqaaiabgkGi2kaadshacqGHciITcaWG4bWaaW baaSqabeaacaWGRbaaaaaakiaayIW7caWGKbGaamiEaiaaiYcaaaa@6CB4@     (8)

0 l 2k+1 u x 2k t u t dx=( 1) k 0 l ( t k u x k ) 2 dx, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWGSb aaniabgUIiYdGcdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaiaa dUgacqGHRaWkcaaIXaaaaOGaamyDaaqaaiabgkGi2kaadIhadaahaa WcbeqaaiaaikdacaWGRbaaaOGaeyOaIyRaamiDaaaadaWcaaqaaiab gkGi2kaadwhaaeaacqGHciITcaWG0baaaiaayIW7caWGKbGaamiEai aai2dacaaIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaadUga aaGcdaWdXbqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaaIOa WaaSaaaeaacqGHciITaeaacqGHciITcaWG0baaamaalaaabaGaeyOa Iy7aaWbaaSqabeaacaWGRbaaaOGaamyDaaqaaiabgkGi2kaadIhada ahaaWcbeqaaiaadUgaaaaaaOGaaGykamaaCaaaleqabaGaaGzaVlaa ikdaaaGccaWGKbGaamiEaiaaiYcaaaa@6545@     (9)

0 l ( 2k+1 u x 2k+1 ) u t dx= (1) k 2 ( k+1 u x k t ) 2 | x=0 x=l , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWGSb aaniabgUIiYdGccaaIOaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaa ikdacaWGRbGaey4kaSIaaGymaaaakiaadwhaaeaacqGHciITcaWG4b WaaWbaaSqabeaacaaIYaGaam4AaiabgUcaRiaaigdaaaaaaOGaaGyk amaalaaabaGaeyOaIyRaamyDaaqaaiabgkGi2kaadshaaaGaaGjcVl aadsgacaWG4bGaaGypamaalaaabaGaaGikaiabgkHiTiaaigdacaaI PaWaaWbaaSqabeaacaWGRbaaaaGcbaGaaGOmaaaacaaIOaWaaSaaae aacqGHciITdaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaOGaamyD aaqaaiabgkGi2kaadIhadaahaaWcbeqaaiaadUgaaaGccqGHciITca WG0baaaiaaiMcadaahaaWcbeqaaiaaygW7caaIYaaaaOGaaGiFamaa DaaaleaacaWG4bGaaGypaiaaicdaaeaacaWG4bGaaGypaiaadYgaaa GccaaISaaaaa@6746@      (10)

0 l ( 2k x 2k 2 u t 2 ) u t dx= (1) k 2 0 l t ( k+1 u t x k ) 2 dx, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWGSb aaniabgUIiYdGccaaIOaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaa ikdacaWGRbaaaaGcbaGaeyOaIyRaamiEamaaCaaaleqabaGaaGOmai aadUgaaaaaaOWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGc caWG1baabaGaeyOaIyRaamiDamaaCaaaleqabaGaaGOmaaaaaaGcca aIPaWaaSaaaeaacqGHciITcaWG1baabaGaeyOaIyRaamiDaaaacaaM i8UaamizaiaadIhacaaI9aWaaSaaaeaacaaIOaGaeyOeI0IaaGymai aaiMcadaahaaWcbeqaaiaadUgaaaaakeaacaaIYaaaamaapehabeWc baGaaGimaaqaaiaadYgaa0Gaey4kIipakmaalaaabaGaeyOaIylaba GaeyOaIyRaamiDaaaacaaIOaWaaSaaaeaacqGHciITdaahaaWcbeqa aiaadUgacqGHRaWkcaaIXaaaaOGaamyDaaqaaiabgkGi2kaadshacq GHciITcaWG4bWaaWbaaSqabeaacaWGRbaaaaaakiaaiMcadaahaaWc beqaaiaaygW7caaIYaaaaOGaamizaiaadIhacaaISaaaaa@6D31@     (11)

0 l ( 2k+1 x 2k+1 2 u t 2 ) u t dx=( 1) k+1 0 l t ( k+1 u t x k ) x ( k+1 u t x k )dx. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWGSb aaniabgUIiYdGccaaIOaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaa ikdacaWGRbGaey4kaSIaaGymaaaaaOqaaiabgkGi2kaadIhadaahaa WcbeqaaiaaikdacaWGRbGaey4kaSIaaGymaaaaaaGcdaWcaaqaaiab gkGi2oaaCaaaleqabaGaaGOmaaaakiaadwhaaeaacqGHciITcaWG0b WaaWbaaSqabeaacaaIYaaaaaaakiaaiMcadaWcaaqaaiabgkGi2kaa dwhaaeaacqGHciITcaWG0baaaiaayIW7caWGKbGaamiEaiaai2daca aIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaadUgacqGHRaWk caaIXaaaaOWaa8qCaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aO WaaSaaaeaacqGHciITaeaacqGHciITcaWG0baaaiaaiIcadaWcaaqa aiabgkGi2oaaCaaaleqabaGaam4AaiabgUcaRiaaigdaaaGccaWG1b aabaGaeyOaIyRaamiDaiabgkGi2kaadIhadaahaaWcbeqaaiaadUga aaaaaOGaaGykamaalaaabaGaeyOaIylabaGaeyOaIyRaamiEaaaaca aIOaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaadUgacqGHRaWkcaaI XaaaaOGaamyDaaqaaiabgkGi2kaadshacqGHciITcaWG4bWaaWbaaS qabeaacaWGRbaaaaaakiaaiMcacaaMi8UaamizaiaadIhacaaIUaaa aa@80AD@     (12)

Доказательство. Для доказательства необходимо применить формулу интегрирования по частям к интегралам, стоящим слева от знака равенства в формулах (7) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@ (12), и учесть краевые условия (2) при соответствующих значениях α k , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHXoqydaWgaaWcbaGaam4Aaaqaba GccaaISaaaaa@3538@   β k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHYoGydaWgaaWcbaGaam4Aaaqaba aaaa@347A@ .

Далее поставим дополнительные ограничения на операторы L12n/x, L32n/x, на которые существенно будем опираться в дальнейшем. Введём обозначения: Ω(τ):=(x,t): MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqqHPoWvcaaIOaGaeqiXdqNaaGykai aaiQdacaaI9aGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI6aaa aa@3CD5@   x(0,l) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG4bGaeyicI4SaaGikaiaaicdaca aISaGaamiBaiaaiMcaaaa@3804@ , t(0,τ)} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG0bGaeyicI4SaaGikaiaaicdaca aISaGaeqiXdqNaaGykaiaai2haaaa@39DB@ , Ω:=Ω(T) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqqHPoWvcaaI6aGaaGypaiabfM6axj aaiIcacaWGubGaaGykaaaa@38A2@ ; W ^ 2,2n (Ω(τ)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaadaqiaaqaaiaadEfaaiaawkWaamaaCa aaleqabaGaaGOmaiaaiYcacaaIYaGaamOBaaaakiaaiIcacqqHPoWv caaIOaGaeqiXdqNaaGykaiaaiMcaaaa@3CD0@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  множество функций, которые удовлетворяют краевым условиям (2), имеют производные до второго порядка по t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG0baaaa@32B6@  и производные до порядка 2n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIYaGaamOBaaaa@336C@  по переменной x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG4baaaa@32BA@  и интегрируемы с квадратом по области Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqqHPoWvaaa@334B@ .

Пусть операторы Lj2n/x симметричные при j= 1,3 ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGQbGaaGypamaanaaabaGaaGymai aaiYcacaaIZaaaaaaa@35B2@ , т.е. для любых функций v 1 , v 2 W ^ 2,2n (Ω) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG2bWaaSbaaSqaaiaaigdaaeqaaO GaaGilaiaadAhadaWgaaWcbaGaaGOmaaqabaGccqGHiiIZdaqiaaqa aiaadEfaaiaawkWaamaaCaaaleqabaGaaGOmaiaaiYcacaaIYaGaam OBaaaakiaaiIcacqqHPoWvcaaIPaaaaa@3FB9@  имеет место тождество

  ( L j 2n ( x ) v 1 , v 2 )=( v 1 , L j 2n ( x ) v 2 ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaGaamitamaaDaaaleaacaWGQb aabaGaaGOmaiaad6gaaaGccaaIOaWaaSaaaeaacqGHciITaeaacqGH ciITcaWG4baaaiaaiMcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaG ilaiaadAhadaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGypaiaaiIca caWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadYeadaqhaaWcba GaamOAaaqaaiaaikdacaWGUbaaaOGaaGikamaalaaabaGaeyOaIyla baGaeyOaIyRaamiEaaaacaaIPaGaamODamaaBaaaleaacaaIYaaabe aakiaaiMcacaaISaaaaa@50EA@     (13)

где (,) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaGaeyyXICTaaGilaiabgwSixl aaiMcaaaa@386C@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  скалярное произведение, определяемое формулой v 1 , v 2 = 0 l v 1 v 2 dx MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaadaqadaqaaiaadAhadaWgaaWcbaGaaG ymaaqabaGccaaISaGaamODamaaBaaaleaacaaIYaaabeaaaOGaayjk aiaawMcaaiaai2dadaWdXaqabSqaaiaaicdaaeaacaWGSbaaniabgU IiYdGccaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaamODamaaBaaaleaa caaIYaaabeaakiaadsgacaWG4baaaa@423A@ . Также потребуем, чтобы эти операторы были положительно определены, т.е. потребуем выполнения неравенства

( L j 2n ( x ) v 1 , v 1 ) C j v 1 , v 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaGaamitamaaDaaaleaacaWGQb aabaGaaGOmaiaad6gaaaGccaaIOaWaaSaaaeaacqGHciITaeaacqGH ciITcaWG4baaaiaaiMcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaG ilaiaadAhadaWgaaWcbaGaaGymaaqabaGccaaIPaGaeyyzImRaam4q amaaBaaaleaacaWGQbaabeaakmaabmaabaGaamODamaaBaaaleaaca aIXaaabeaakiaaiYcacaWG2bWaaSbaaSqaaiaaigdaaeqaaaGccaGL OaGaayzkaaGaaGilaaaa@4B14@     (14)

где C j >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGdbWaaSbaaSqaaiaadQgaaeqaaO GaaGOpaiaaicdaaaa@352C@ , j= 1,3 ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGQbGaaGypamaanaaabaGaaGymai aaiYcacaaIZaaaaaaa@35B2@ . Так, при p k 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGWbWaaSbaaSqaaiaadUgaaeqaaO GaeyiyIKRaaGimaaaa@3659@  дифференциальный оператор

  L( x ):= k=0 n (1) k p k 2 2k x 2k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbGaaGikamaalaaabaGaeyOaIy labaGaeyOaIyRaamiEaaaacaaIPaGaaGOoaiaai2dadaaeWbqabSqa aiaadUgacaaI9aGaaGimaaqaaiaad6gaa0GaeyyeIuoakiaaiIcacq GHsislcaaIXaGaaGykamaaCaaaleqabaGaam4Aaaaakiaadchadaqh aaWcbaGaam4AaaqaaiaaikdaaaGcdaWcaaqaaiabgkGi2oaaCaaale qabaGaaGOmaiaadUgaaaaakeaacqGHciITcaWG4bWaaWbaaSqabeaa caaIYaGaam4Aaaaaaaaaaa@4DA9@     (15)

является примером симметричного положительного оператора на пространстве функций, удовлетворяющих краевым условиям (2).

В этой работе будем говорить о слабых решениях задачи (1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@ (3), т.е. таких функциях u(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C8@ , которые для любых v(x) H 0 2n (0;l) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG2bGaaGikaiaadIhacaaIPaGaey icI4SaamisamaaDaaaleaacaaIWaaabaGaaGOmaiaad6gaaaGccaaI OaGaaGimaiaaiUdacaWGSbGaaGykaaaa@3DE0@  и для любого t 0;T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG0bGaeyicI48aamWaaeaacaaIWa GaaG4oaiaadsfaaiaawUfacaGLDbaaaaa@3884@  при u(x,t) H 0 2n (0;l) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZcaWGibWaa0baaSqaaiaaicdaaeaacaaIYaGa amOBaaaakiaaiIcacaaIWaGaaG4oaiaadYgacaaIPaaaaa@3F8E@ , F(x,t) L 2 (0;l) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGgbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZcaWGmbWaaWbaaSqabeaacaaIYaaaaOGaaGik aiaaicdacaaI7aGaamiBaiaaiMcaaaa@3DB6@  удовлетворяют тождеству

( L 1 2n ( x ) 2 u t 2 ,v)+( L 2 2n ( x ) u t ,v)+( L 3 2n ( x )u,v)=(F(x,t),v(x)). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaGaamitamaaDaaaleaacaaIXa aabaGaaGOmaiaad6gaaaGccaaIOaWaaSaaaeaacqGHciITaeaacqGH ciITcaWG4baaaiaaiMcadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaG OmaaaakiaadwhaaeaacqGHciITcaWG0bWaaWbaaSqabeaacaaIYaaa aaaakiaaiYcacaWG2bGaaGykaiabgUcaRiaaiIcacaWGmbWaa0baaS qaaiaaikdaaeaacaaIYaGaamOBaaaakiaaiIcadaWcaaqaaiabgkGi 2cqaaiabgkGi2kaadIhaaaGaaGykamaalaaabaGaeyOaIyRaamyDaa qaaiabgkGi2kaadshaaaGaaGilaiaadAhacaaIPaGaey4kaSIaaGik aiaadYeadaqhaaWcbaGaaG4maaqaaiaaikdacaWGUbaaaOGaaGikam aalaaabaGaeyOaIylabaGaeyOaIyRaamiEaaaacaaIPaGaamyDaiaa iYcacaWG2bGaaGykaiaai2dacaaIOaGaamOraiaaiIcacaWG4bGaaG ilaiaadshacaaIPaGaaGilaiaadAhacaaIOaGaamiEaiaaiMcacaaI PaGaaGOlaaaa@6F27@     (16)

Стоит обратить внимание на вопрос существования решения таких задач. Так, например, следуя [5], с использованием метода Галёркина можно построить последовательность конечномерных приближений, которая в слабом смысле будет сходиться к решению, которое удовлетворяет тождеству (16).

Пусть оператор L12n/x имеет вид (15), т.е.

p 1,r = 0, r=2k+1, (1) k p 2k 2 , r=2k. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGWbWaaSbaaSqaaiaaigdacaaISa GaamOCaaqabaGccaaI9aWaaiqaaeaafaqabeGacaaabaGaaGimaiaa iYcaaeaacaWGYbGaaGypaiaaikdacaWGRbGaey4kaSIaaGymaiaaiY caaeaacaaIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaadUga aaGccaWGWbWaa0baaSqaaiaaikdacaWGRbaabaGaaGOmaaaakiaaiY caaeaacaWGYbGaaGypaiaaikdacaWGRbGaaGOlaaaaaiaawUhaaaaa @4B0E@

Далее введём на множестве W ^ 2,2n (Ω) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaadaqiaaqaaiaadEfaaiaawkWaamaaCa aaleqabaGaaGOmaiaaiYcacaaIYaGaamOBaaaakiaaiIcacqqHPoWv caaIPaaaaa@39A6@  новое скалярное произведение

[u,v]=( L 1 2n ( x )u,v). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIBbGaamyDaiaaiYcacaWG2bGaaG yxaiaai2dacaaIOaGaamitamaaDaaaleaacaaIXaaabaGaaGOmaiaa d6gaaaGccaaIOaWaaSaaaeaacqGHciITaeaacqGHciITcaWG4baaai aaiMcacaWG1bGaaGilaiaadAhacaaIPaGaaGOlaaaa@4473@     (17)

Формула (17) при p 0 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGWbWaaSbaaSqaaiaaicdaaeqaaO GaeyiyIKRaaGimaaaa@3623@  корректно определяет скалярное произведение в силу построения оператора L12n/x, симметричность следует из равенства (13), положительная определённость MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  из (14).

Лемма 2. Имеет место неравенство

w 2 2 σ l w L 1 2n 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWG3bGae8xjIa1aa0baaSqaaiaaikdaaeaacaaIYaaaaOGaeyiz ImQaeq4Wdm3aaSbaaSqaaiaadYgaaeqaaOGae8xjIaLaam4Daiab=v IiqnaaDaaaleaacaWGmbWaa0baaeaacaaIXaaabaGaaGOmaiaad6ga aaaabaGaaGOmaaaakiaaiYcaaaa@4814@

где w 2 2 =(w,w), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWG3bGae8xjIa1aa0baaSqaaiaaikdaaeaacaaIYaaaaOGaaGyp aiaaiIcacaWG3bGaaGilaiaadEhacaaIPaGaaGilaaaa@40CB@   w L 1 2n 2 =[w,w], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWG3bGae8xjIa1aa0baaSqaaiaadYeadaqhaaqaaiaaigdaaeaa caaIYaGaamOBaaaaaeaacaaIYaaaaOGaaGypaiaaiUfacaWG3bGaaG ilaiaadEhacaaIDbGaaGilaaaa@43D3@  σl=1/(L12n(1/l)).

Доказательство. В силу формулы Ньютона MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@ Лейбница, свойств интеграла и неравенства треугольника имеем

|w(x,t)||w(0,t)||w(x,t)w(0,t)|=| 0 x w x dx| 0 x | w x |dx. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaI8bGaam4DaiaaiIcacaWG4bGaaG ilaiaadshacaaIPaGaaGiFaiabgkHiTiaaiYhacaWG3bGaaGikaiaa icdacaaISaGaamiDaiaaiMcacaaI8bGaeyizImQaaGiFaiaadEhaca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiabgkHiTiaadEhacaaIOaGa aGimaiaaiYcacaWG0bGaaGykaiaaiYhacaaI9aGaaGiFamaapehabe WcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakmaalaaabaGaeyOaIyRa am4DaaqaaiabgkGi2kaadIhaaaGaamizaiaadIhacaaI8bGaeyizIm 6aa8qCaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaaGjcVlaa iYhadaWcaaqaaiabgkGi2kaadEhaaeaacqGHciITcaWG4baaaiaaiY hacaWGKbGaamiEaiaai6caaaa@6DC7@     (18)

После возведения в квадрат получаем соотношения

w20lwxdx2+2wx,t w0,t0lwxdx2+2w0,𝑡maxx[0,l]wx,t,

и, применив неравенство Гёльдера,

|w | 2 l C w 0 l ( w x ) 2 dx, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaI8bGaam4DaiaaiYhadaahaaWcbe qaaiaaikdaaaGccqGHKjYOcaWGSbGaam4qamaaBaaaleaacaWG3baa beaakmaapehabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaaiI cadaWcaaqaaiabgkGi2kaadEhaaeaacqGHciITcaWG4baaaiaaiMca daahaaWcbeqaaiaaygW7caaIYaaaaOGaamizaiaadIhacaaISaaaaa@49CA@     (19)

где

C w =1+2|w(0,t)| max x[0,l] |w(x,t)|/(l 0 l ( w x ) 2 dx). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGdbWaaSbaaSqaaiaadEhaaeqaaO GaaGypaiaaigdacqGHRaWkcaaIYaGaaGiFaiaadEhacaaIOaGaaGim aiaaiYcacaWG0bGaaGykaiaaiYhadaGfqbqabSqaaiaadIhacqGHii IZcaaIBbGaaGimaiaaiYcacaWGSbGaaGyxaaqabOqaaiGac2gacaGG HbGaaiiEaaaacaaI8bGaam4DaiaaiIcacaWG4bGaaGilaiaadshaca aIPaGaaGiFaiaai+cacaaIOaGaamiBamaapehabeWcbaGaaGimaaqa aiaadYgaa0Gaey4kIipakiaaiIcadaWcaaqaaiabgkGi2kaadEhaae aacqGHciITcaWG4baaaiaaiMcadaahaaWcbeqaaiaaygW7caaIYaaa aOGaamizaiaadIhacaaIPaGaaGOlaaaa@614F@

С помощью леммы и неравенства (19) оценим слагаемые в выражении нормы, порождённой оператором L 1 2n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaa0baaSqaaiaaigdaaeaaca aIYaGaamOBaaaaaaa@3525@ :

w L 1 2n 2 =( L 1 2n ( x )w,w)= 0 l k=0 n p 2k 2 ( k w x k ) 2 dx. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWG3bGae8xjIa1aa0baaSqaaiaadYeadaqhaaqaaiaaigdaaeaa caaIYaGaamOBaaaaaeaacaaIYaaaaOGaaGypaiaaiIcacaWGmbWaa0 baaSqaaiaaigdaaeaacaaIYaGaamOBaaaakiaaiIcadaWcaaqaaiab gkGi2cqaaiabgkGi2kaadIhaaaGaaGykaiaadEhacaaISaGaam4Dai aaiMcacaaI9aWaa8qCaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8 aOGaaGjcVpaaqahabeWcbaGaam4Aaiaai2dacaaIWaaabaGaamOBaa qdcqGHris5aOGaamiCamaaDaaaleaacaaIYaGaam4Aaaqaaiaaikda aaGccaaIOaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaadUgaaaGcca WG3baabaGaeyOaIyRaamiEamaaCaaaleqabaGaam4AaaaaaaGccaaI PaWaaWbaaSqabeaacaaMb8UaaGOmaaaakiaadsgacaWG4bGaaGOlaa aa@68C5@     (20)

Заметим, что неравенство (19) можно применять для производных, тогда получим

| s w x s | 2 l C s w x s 0 l ( s+1 w x s+1 ) 2 dx, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaI8bWaaSaaaeaacqGHciITdaahaa WcbeqaaiaadohaaaGccaWG3baabaGaeyOaIyRaamiEamaaCaaaleqa baGaam4CaaaaaaGccaaI8bWaaWbaaSqabeaacaaIYaaaaOGaeyizIm QaamiBaiaadoeadaWgaaWcbaWaaSaaaeaacqGHciITdaahaaqabeaa caWGZbaaaiaadEhaaeaacqGHciITcaWG4bWaaWbaaeqabaGaam4Caa aaaaaabeaakmaapehabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipa kiaaiIcadaWcaaqaaiabgkGi2oaaCaaaleqabaGaam4CaiabgUcaRi aaigdaaaGccaWG3baabaGaeyOaIyRaamiEamaaCaaaleqabaGaam4C aiabgUcaRiaaigdaaaaaaOGaaGykamaaCaaaleqabaGaaGzaVlaaik daaaGccaWGKbGaamiEaiaaiYcaaaa@5BA6@

откуда следует, что для любых s{0,1,...,2n1} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGZbGaeyicI4SaaG4Eaiaaicdaca aISaGaaGymaiaaiYcacaaIUaGaaGOlaiaai6cacaaISaGaaGOmaiaa d6gacqGHsislcaaIXaGaaGyFaaaa@3F5B@  выполняется оценка

s w x s 2 2 l 2 C s w x s s+1 w x s+1 2 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cudaWcaaqaaiabgkGi2oaaCaaaleqabaGaam4CaaaakiaadEhaaeaa cqGHciITcaWG4bWaaWbaaSqabeaacaWGZbaaaaaakiab=vIiqnaaDa aaleaacaaIYaaabaGaaGOmaaaakiabgsMiJkaadYgadaahaaWcbeqa aiaaikdaaaGccaWGdbWaaSbaaSqaamaalaaabaGaeyOaIy7aaWbaae qabaGaam4CaaaacaWG3baabaGaeyOaIyRaamiEamaaCaaabeqaaiaa dohaaaaaaaqabaGccqWFLicudaWcaaqaaiabgkGi2oaaCaaaleqaba Gaam4CaiabgUcaRiaaigdaaaGccaWG3baabaGaeyOaIyRaamiEamaa CaaaleqabaGaam4CaiabgUcaRiaaigdaaaaaaOGae8xjIa1aa0baaS qaaiaaikdaaeaacaaIYaaaaOGaaGOlaaaa@5C1E@     (21)

Поменяем в (20) порядок интегрирования и суммирования и применим неравенство (21):

w L 1 2n 2 = k=0 n p 2k 2 0 l ( k w x k ) 2 dx= k=0 n p 2k 2 k w x k 2 2 w 2 2 k=0 n p 2k 2 l 2k ( s=0 k C s w x s ) 1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWG3bGae8xjIa1aa0baaSqaaiaadYeadaqhaaqaaiaaigdaaeaa caaIYaGaamOBaaaaaeaacaaIYaaaaOGaaGypamaaqahabeWcbaGaam 4Aaiaai2dacaaIWaaabaGaamOBaaqdcqGHris5aOGaamiCamaaDaaa leaacaaIYaGaam4AaaqaaiaaikdaaaGcdaWdXbqabSqaaiaaicdaae aacaWGSbaaniabgUIiYdGccaaIOaWaaSaaaeaacqGHciITdaahaaWc beqaaiaadUgaaaGccaWG3baabaGaeyOaIyRaamiEamaaCaaaleqaba Gaam4AaaaaaaGccaaIPaWaaWbaaSqabeaacaaMb8UaaGOmaaaakiaa dsgacaWG4bGaaGypamaaqahabeWcbaGaam4Aaiaai2dacaaIWaaaba GaamOBaaqdcqGHris5aOGaamiCamaaDaaaleaacaaIYaGaam4Aaaqa aiaaikdaaaGccqWFLicudaWcaaqaaiabgkGi2oaaCaaaleqabaGaam 4AaaaakiaadEhaaeaacqGHciITcaWG4bWaaWbaaSqabeaacaWGRbaa aaaakiab=vIiqnaaDaaaleaacaaIYaaabaGaaGOmaaaakiabgwMiZk ab=vIiqjaadEhacqWFLicudaqhaaWcbaGaaGOmaaqaaiaaikdaaaGc daaeWbqabSqaaiaadUgacaaI9aGaaGimaaqaaiaad6gaa0GaeyyeIu oakmaalaaabaGaamiCamaaDaaaleaacaaIYaGaam4Aaaqaaiaaikda aaaakeaacaWGSbWaaWbaaSqabeaacaaIYaGaam4AaaaaaaGccaaIOa WaaebCaeqaleaacaWGZbGaaGypaiaaicdaaeaacaWGRbaaniabg+Gi vdGccaWGdbWaaSbaaSqaamaalaaabaGaeyOaIy7aaWbaaeqabaGaam 4CaaaacaWG3baabaGaeyOaIyRaamiEamaaCaaabeqaaiaadohaaaaa aaqabaGccaaIPaWaaWbaaSqabeaacaaMb8UaeyOeI0IaaGymaaaaki aai6caaaa@940C@

Так как min𝑠{0,1,...,𝑛} Cswxs=1, то окончательно получим

w L 1 2n 2 L 1 2n ( 1 l )w 2 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWG3bGae8xjIa1aa0baaSqaaiaadYeadaqhaaqaaiaaigdaaeaa caaIYaGaamOBaaaaaeaacaaIYaaaaOGaeyyzImRaamitamaaDaaale aacaaIXaaabaGaaGOmaiaad6gaaaGccaaIOaWaaSaaaeaacaaIXaaa baGaamiBaaaacaaIPaGae8xjIaLaam4Daiab=vIiqnaaDaaaleaaca aIYaaabaGaaGOmaaaakiaai6caaaa@4BD0@

Полагая σl=1/(L12n(1/l)), завершаем доказательство леммы 2.

2. Задача управления

Рассмотрим уравнение (1) с краевыми условиями (2) и начальными условиями (3). Мы можем выбрать функцию F(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGgbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@3699@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  правую часть уравнения (1). Пусть множество

Φ:={F(x,t): 0 T 0 l F 2 (x,t)dxdt<+}. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqqHMoGrcaaI6aGaaGypaiaaiUhaca WGgbGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI6aWaa8qCaeqa leaacaaIWaaabaGaamivaaqdcqGHRiI8aOWaa8qCaeqaleaacaaIWa aabaGaamiBaaqdcqGHRiI8aOGaamOramaaCaaaleqabaGaaGOmaaaa kiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGjcVlaadsgacaWG4b GaaGjcVlaadsgacaWG0bGaaGipaiabgUcaRiabg6HiLkaai2hacaaI Uaaaaa@551E@

Наша цель MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  определить функцию fΦ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGMbGaeyicI4SaeuOPdyeaaa@35A6@ , которая доставляет минимум функционалу

  J(f)= u(x,T,f) y 0 (x) 2 2 + u t (x,T,f) y 1 (x) 2 2 + 1 ε 2 0 l 0 T f 2 (x,t)dtdx, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGkbGaaGikaiaadAgacaaIPaGaaG ypamaafmaabaGaamyDaiaaiIcacaWG4bGaaGilaiaadsfacaaISaGa amOzaiaaiMcacqGHsislcaWG5bWaaSbaaSqaaiaaicdaaeqaaOGaaG ikaiaadIhacaaIPaaacaGLjWUaayPcSdWaa0baaSqaaiaaikdaaeaa caaIYaaaaOGaey4kaSseeuuDJXwAKbsr4rNCHbaceaGae8xjIa1aaS aaaeaacqGHciITcaWG1baabaGaeyOaIyRaamiDaaaacaaIOaGaamiE aiaaiYcacaWGubGaaGilaiaadAgacaaIPaGaeyOeI0IaamyEamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGykaiab=vIiqnaaDaaa leaacaaIYaaabaGaaGOmaaaakiabgUcaRmaalaaabaGaaGymaaqaai abew7aLnaaCaaaleqabaGaaGOmaaaaaaGcdaWdXbqabSqaaiaaicda aeaacaWGSbaaniabgUIiYdGcdaWdXbqabSqaaiaaicdaaeaacaWGub aaniabgUIiYdGccaWGMbWaaWbaaSqabeaacaaIYaaaaOGaaGikaiaa dIhacaaISaGaamiDaiaaiMcacaaMi8UaamizaiaadshacaWGKbGaam iEaiaaiYcaaaa@77B0@     (22)

где y 0 (x), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG5bWaaSbaaSqaaiaaicdaaeqaaO GaaGikaiaadIhacaaIPaGaaGilaaaa@36C3@   y 1 (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG5bWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadIhacaaIPaaaaa@360E@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  заданные функции; ε, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH1oqzcaaISaaaaa@341A@   T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGubaaaa@3296@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  заданные положительные числа. Такой вид функционала рассматривается в работах [6, 10]. Другими словами, необходимо определить функцию f MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGMbaaaa@32A8@  такую, что к заданному моменту времени T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGubaaaa@3296@  решение задачи (1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@ (3) приблизится к функции y 0 (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG5bWaaSbaaSqaaiaaicdaaeqaaO GaaGikaiaadIhacaaIPaaaaa@360D@ , а производная решения по t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG0baaaa@32B6@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  к y 1 (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG5bWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadIhacaaIPaaaaa@360E@ . Заметим, что если y 0 (x)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG5bWaaSbaaSqaaiaaicdaaeqaaO GaaGikaiaadIhacaaIPaGaeyyyIORaaGimaaaa@3890@ , y 1 (x)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG5bWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadIhacaaIPaGaeyyyIORaaGimaaaa@3891@ , то задача состоит в гашении колебаний к заданному моменту времени.

Вместо (22) можно рассмотреть функционал

J L 1 2n (f)= u(x,T,f) y 0 (x) L 1 2n 2 + u t (x,T,f) y 1 (x) L 1 2n 2 + C ε 0 l 0 T f 2 (x,t)dtdx, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGkbWaaSbaaSqaaiaadYeadaqhaa qaaiaaigdaaeaacaaIYaGaamOBaaaaaeqaaOGaaGikaiaadAgacaaI PaGaaGypamaafmaabaGaamyDaiaaiIcacaWG4bGaaGilaiaadsfaca aISaGaamOzaiaaiMcacqGHsislcaWG5bWaaSbaaSqaaiaaicdaaeqa aOGaaGikaiaadIhacaaIPaaacaGLjWUaayPcSdWaa0baaSqaaiaadY eadaqhaaqaaiaaigdaaeaacaaIYaGaamOBaaaaaeaacaaIYaaaaOGa ey4kaSseeuuDJXwAKbsr4rNCHbaceaGae8xjIa1aaSaaaeaacqGHci ITcaWG1baabaGaeyOaIyRaamiDaaaacaaIOaGaamiEaiaaiYcacaWG ubGaaGilaiaadAgacaaIPaGaeyOeI0IaamyEamaaBaaaleaacaaIXa aabeaakiaaiIcacaWG4bGaaGykaiab=vIiqnaaDaaaleaacaWGmbWa a0baaeaacaaIXaaabaGaaGOmaiaad6gaaaaabaGaaGOmaaaakiabgU caRiaadoeadaWgaaWcbaGaeqyTdugabeaakmaapehabeWcbaGaaGim aaqaaiaadYgaa0Gaey4kIipakmaapehabeWcbaGaaGimaaqaaiaads faa0Gaey4kIipakiaadAgadaahaaWcbeqaaiaaikdaaaGccaaIOaGa amiEaiaaiYcacaWG0bGaaGykaiaayIW7caWGKbGaamiDaiaadsgaca WG4bGaaGilaaaa@7FC5@     (23)

где Cε=1/(σlε2).

Теорема 1 [об оценке функционала]. Имеет место неравенство

  J(f) σ l J L 1 2n (f). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGkbGaaGikaiaadAgacaaIPaGaey izImQaeq4Wdm3aaSbaaSqaaiaadYgaaeqaaOGaamOsamaaBaaaleaa caWGmbWaa0baaeaacaaIXaaabaGaaGOmaiaad6gaaaaabeaakiaaiI cacaWGMbGaaGykaiaai6caaaa@40E5@

Доказательство. Воспользуемся леммой для первого и второго слагаемых в (22). Тогда, очевидно, получим

J(f) σ l ( u(x,T,f) y 0 (x) L 1 2n 2 + u t (x,T,f) y 1 (x) L 1 2n 2 + 1 σ l ε 2 0 l 0 T f 2 (x,t)dtdx). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGkbGaaGikaiaadAgacaaIPaGaey izImQaeq4Wdm3aaSbaaSqaaiaadYgaaeqaaOGaaGikamaafmaabaGa amyDaiaaiIcacaWG4bGaaGilaiaadsfacaaISaGaamOzaiaaiMcacq GHsislcaWG5bWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadIhacaaI PaaacaGLjWUaayPcSdWaa0baaSqaaiaadYeadaqhaaqaaiaaigdaae aacaaIYaGaamOBaaaaaeaacaaIYaaaaOGaey4kaSseeuuDJXwAKbsr 4rNCHbaceaGae8xjIa1aaSaaaeaacqGHciITcaWG1baabaGaeyOaIy RaamiDaaaacaaIOaGaamiEaiaaiYcacaWGubGaaGilaiaadAgacaaI PaGaeyOeI0IaamyEamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG4b GaaGykaiab=vIiqnaaDaaaleaacaWGmbWaa0baaeaacaaIXaaabaGa aGOmaiaad6gaaaaabaGaaGOmaaaakiabgUcaRmaalaaabaGaaGymaa qaaiabeo8aZnaaBaaaleaacaWGSbaabeaakiabew7aLnaaCaaaleqa baGaaGOmaaaaaaGcdaWdXbqabSqaaiaaicdaaeaacaWGSbaaniabgU IiYdGcdaWdXbqabSqaaiaaicdaaeaacaWGubaaniabgUIiYdGccaWG MbWaaWbaaSqabeaacaaIYaaaaOGaaGikaiaadIhacaaISaGaamiDai aaiMcacaaMi8UaamizaiaadshacaWGKbGaamiEaiaaiMcacaaIUaaa aa@851B@

Положив Cε=1/(σlε2), завершим доказательство теоремы.

Отметим, что если J L 1 2n ( f m )0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGkbWaaSbaaSqaaiaadYeadaqhaa qaaiaaigdaaeaacaaIYaGaamOBaaaaaeqaaOGaaGikaiaadAgadaWg aaWcbaGaamyBaaqabaGccaaIPaGaeyOKH4QaaGimaaaa@3C3E@  при m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGTbGaeyOKH4QaeyOhIukaaa@360D@ , то в силу неравенства из теоремы получим J( f m )0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGkbGaaGikaiaadAgadaWgaaWcba GaamyBaaqabaGccaaIPaGaeyOKH4QaaGimaaaa@38AB@  при m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGTbGaeyOKH4QaeyOhIukaaa@360D@ . Далее, если определим минимизирующую последовательность функций f m Φ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGMbWaaSbaaSqaaiaad2gaaeqaaO GaeyicI4SaeuOPdyeaaa@36CE@  такую, что limmJL12nfmJL12nf (здесь f Φ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGMbWaaWbaaSqabeaacqGHxiIkaa GccqGHiiIZcqqHMoGraaa@36CC@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  функция, доставляющая минимум функционалу (23)), то будет найден не оптимальный, а квазиоптимальный режим.

Перепишем формулу (23) в более удобном виде:

J L 1 2n (f)=(u(x,T,f) y 0 (x),u(x,T,f) y 0 (x))+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGkbWaaSbaaSqaaiaadYeadaqhaa qaaiaaigdaaeaacaaIYaGaamOBaaaaaeqaaOGaaGikaiaadAgacaaI PaGaaGypaiaaiIcacaWG1bGaaGikaiaadIhacaaISaGaamivaiaaiY cacaWGMbGaaGykaiabgkHiTiaadMhadaWgaaWcbaGaaGimaaqabaGc caaIOaGaamiEaiaaiMcacaaISaGaamyDaiaaiIcacaWG4bGaaGilai aadsfacaaISaGaamOzaiaaiMcacqGHsislcaWG5bWaaSbaaSqaaiaa icdaaeqaaOGaaGikaiaadIhacaaIPaGaaGykaiabgUcaRaaa@53C5@

+( u t (x,T,f) y 1 (x), u t (x,T,f) y 1 (x))+ C ε (f,f). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqGHRaWkcaaIOaWaaSaaaeaacqGHci ITcaWG1baabaGaeyOaIyRaamiDaaaacaaIOaGaamiEaiaaiYcacaWG ubGaaGilaiaadAgacaaIPaGaeyOeI0IaamyEamaaBaaaleaacaaIXa aabeaakiaaiIcacaWG4bGaaGykaiaaiYcadaWcaaqaaiabgkGi2kaa dwhaaeaacqGHciITcaWG0baaaiaaiIcacaWG4bGaaGilaiaadsfaca aISaGaamOzaiaaiMcacqGHsislcaWG5bWaaSbaaSqaaiaaigdaaeqa aOGaaGikaiaadIhacaaIPaGaaGzaVlaaiMcacqGHRaWkcaWGdbWaaS baaSqaaiabew7aLbqabaGccaaIOaGaamOzaiaaiYcacaWGMbGaaGyk aiaai6caaaa@5DB2@

Следующим стандартным шагом для получения необходимых условий оптимальности является вычисление вариации функционала J L 1 2n (f) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGkbWaaSbaaSqaaiaadYeadaqhaa qaaiaaigdaaeaacaaIYaGaamOBaaaaaeqaaOGaaGikaiaadAgacaaI Paaaaa@386F@ . Определим её как

δ J L 1 2n = J L 1 2n (f+h) J L 1 2n (f), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH0oazcaWGkbWaaSbaaSqaaiaadY eadaqhaaqaaiaaigdaaeaacaaIYaGaamOBaaaaaeqaaOGaaGypaiaa dQeadaWgaaWcbaGaamitamaaDaaabaGaaGymaaqaaiaaikdacaWGUb aaaaqabaGccaaIOaGaamOzaiabgUcaRiaadIgacaaIPaGaeyOeI0Ia amOsamaaBaaaleaacaWGmbWaa0baaeaacaaIXaaabaGaaGOmaiaad6 gaaaaabeaakiaaiIcacaWGMbGaaGykaiaaiYcaaaa@4961@

где h(x,t)Φ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGObGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZcqqHMoGraaa@39B9@ .

Получим выражение для вариации функционала:

δJL12n=(u(x,T,f+h)y0(x),u(x,T,f+h)y0(x))+

+(ut(x,T,f+h)y1(x),ut(x,T,f+h)y1(x))+Cε(f+h,f+h)

(u(x,T,f)y0(x),u(x,T,f)y0(x))(ut(x,T,f)y1(x),ut(x,T,f)y1(x))Cε(f,f)=

=(u(x,T,f+h)+u(x,T,f),u(x,T,f+h)u(x,T,f))+

+(ut(x,T,f+h)+ut(x,T,f),ut(x,T,f+h)ut(x,T,f))

2((u(x,T,f+h)u(x,T,f),y0(x))+(ut(x,T,f+h)ut(x,T,f),y1(x)))+

+Cε0l0T2f(x,t)h(x,t)+h2(x,t)dtdx.

Пусть теперь δu(x,t)=u(x,t,f+h)u(x,t,f). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH0oazcaWG1bGaaGikaiaadIhaca aISaGaamiDaiaaiMcacaaI9aGaamyDaiaaiIcacaWG4bGaaGilaiaa dshacaaISaGaamOzaiabgUcaRiaadIgacaaIPaGaeyOeI0IaamyDai aaiIcacaWG4bGaaGilaiaadshacaaISaGaamOzaiaaiMcacaaIUaaa aa@4A00@  Эта функция удовлетворяет исходному уравнению (1) с правой частью F(x,t)=h(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGgbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaamiAaiaaiIcacaWG4bGaaGilaiaadshacaaI Paaaaa@3C5E@ , а именно

L 1 2n ( x ) 2 t 2 (δu)+ L 2 2n ( x ) t (δu)+ L 3 2n ( x )(δu)=h(x,t), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaa0baaSqaaiaaigdaaeaaca aIYaGaamOBaaaakiaaiIcadaWcaaqaaiabgkGi2cqaaiabgkGi2kaa dIhaaaGaaGykamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaa GcbaGaeyOaIyRaamiDamaaCaaaleqabaGaaGOmaaaaaaGccaaIOaGa eqiTdqMaamyDaiaaiMcacqGHRaWkcaWGmbWaa0baaSqaaiaaikdaae aacaaIYaGaamOBaaaakiaaiIcadaWcaaqaaiabgkGi2cqaaiabgkGi 2kaadIhaaaGaaGykamaalaaabaGaeyOaIylabaGaeyOaIyRaamiDaa aacaaIOaGaeqiTdqMaamyDaiaaiMcacqGHRaWkcaWGmbWaa0baaSqa aiaaiodaaeaacaaIYaGaamOBaaaakiaaiIcadaWcaaqaaiabgkGi2c qaaiabgkGi2kaadIhaaaGaaGykaiaaiIcacqaH0oazcaWG1bGaaGyk aiaai2dacaWGObGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaISa aaaa@69AB@     (24)

краевым условиям (2) и нулевым начальным условиям

δu | t=0 =0, (δu) t | t=0 =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH0oazcaWG1bGaaGiFamaaBaaale aacaWG0bGaaGypaiaaicdaaeqaaOGaaGypaiaaicdacaaISaGaaGzb VpaalaaabaGaeyOaIyRaaGikaiabes7aKjaadwhacaaIPaaabaGaey OaIyRaamiDaaaacaaI8bWaaSbaaSqaaiaadshacaaI9aGaaGimaaqa baGccaaI9aGaaGimaiaai6caaaa@499F@     (25)

Тогда

δ J L 1 2n =(δu+2u(x,T,f),δu)+( (δu) t +2 u t (x,T,f), (δu) t ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH0oazcaWGkbWaaSbaaSqaaiaadY eadaqhaaqaaiaaigdaaeaacaaIYaGaamOBaaaaaeqaaOGaaGypaiaa iIcacqaH0oazcaWG1bGaey4kaSIaaGOmaiaadwhacaaIOaGaamiEai aaiYcacaWGubGaaGilaiaadAgacaaIPaGaaGilaiabes7aKjaadwha caaIPaGaey4kaSIaaGikamaalaaabaGaeyOaIyRaaGikaiabes7aKj aadwhacaaIPaaabaGaeyOaIyRaamiDaaaacqGHRaWkcaaIYaWaaSaa aeaacqGHciITcaWG1baabaGaeyOaIyRaamiDaaaacaaIOaGaamiEai aaiYcacaWGubGaaGilaiaadAgacaaIPaGaaGilamaalaaabaGaeyOa IyRaaGikaiabes7aKjaadwhacaaIPaaabaGaeyOaIyRaamiDaaaaca aIPaGaeyOeI0caaa@67A9@

  2((δu, y 0 (x))+( (δu) t , y 1 (x)))+ C ε 0 l 0 T 2f(x,t)h(x,t)+ h 2 (x,t) dtdx, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqGHsislcaaIYaGaaGikaiaaiIcacq aH0oazcaWG1bGaaGilaiaadMhadaWgaaWcbaGaaGimaaqabaGccaaI OaGaamiEaiaaiMcacaaIPaGaey4kaSIaaGikamaalaaabaGaeyOaIy RaaGikaiabes7aKjaadwhacaaIPaaabaGaeyOaIyRaamiDaaaacaaI SaGaamyEamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGykai aaiMcacaaIPaGaey4kaSIaam4qamaaBaaaleaacqaH1oqzaeqaaOWa a8qCaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOWaa8qCaeqale aacaaIWaaabaGaamivaaqdcqGHRiI8aOWaaeWaaeaacaaIYaGaamOz aiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamiAaiaaiIcacaWG4b GaaGilaiaadshacaaIPaGaey4kaSIaamiAamaaCaaaleqabaGaaGOm aaaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaaacaGLOaGaayzkaa GaamizaiaadshacaaMi8UaamizaiaadIhacaaISaaaaa@71CA@

  δ J L 1 2n =2((u(x,T,f) y 0 (x),δu)+( u t (x,T,f) y 1 (x), (δu) t )+ C ε (f,h))+ R h , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH0oazcaWGkbWaaSbaaSqaaiaadY eadaqhaaqaaiaaigdaaeaacaaIYaGaamOBaaaaaeqaaOGaaGypaiaa ikdacaaIOaGaaGikaiaadwhacaaIOaGaamiEaiaaiYcacaWGubGaaG ilaiaadAgacaaIPaGaeyOeI0IaamyEamaaBaaaleaacaaIWaaabeaa kiaaiIcacaWG4bGaaGykaiaaiYcacqaH0oazcaWG1bGaaGykaiabgU caRiaaiIcadaWcaaqaaiabgkGi2kaadwhaaeaacqGHciITcaWG0baa aiaaiIcacaWG4bGaaGilaiaadsfacaaISaGaamOzaiaaiMcacqGHsi slcaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadIhacaaIPaGa aGilamaalaaabaGaeyOaIyRaaGikaiabes7aKjaadwhacaaIPaaaba GaeyOaIyRaamiDaaaacaaIPaGaey4kaSIaam4qamaaBaaaleaacqaH 1oqzaeqaaOGaaGikaiaadAgacaaISaGaamiAaiaaiMcacaaIPaGaey 4kaSIaamOuamaaBaaaleaacaWGObaabeaakiaaiYcaaaa@70B0@     (26)

где

R h =(δu,δu)+( (δu) t , (δu) t )+ C ε (h,h). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGsbWaaSbaaSqaaiaadIgaaeqaaO GaaGypaiaaiIcacqaH0oazcaWG1bGaaGilaiabes7aKjaadwhacaaI PaGaey4kaSIaaGikamaalaaabaGaeyOaIyRaaGikaiabes7aKjaadw hacaaIPaaabaGaeyOaIyRaamiDaaaacaaISaWaaSaaaeaacqGHciIT caaIOaGaeqiTdqMaamyDaiaaiMcaaeaacqGHciITcaWG0baaaiaaiM cacqGHRaWkcaWGdbWaaSbaaSqaaiabew7aLbqabaGccaaIOaGaamiA aiaaiYcacaWGObGaaGykaiaai6caaaa@56BA@     (27)

Далее определим сопряжённую функцию ψ(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHipqEcaaIOaGaamiEaiaaiYcaca WG0bGaaGykaaaa@379C@ , которая является решением краевой задачи для сопряжённого уравнения. Начальные условия для сопряжённой функции определяются условиями

ψ t | t=T =2(u(x,T,f) y 0 (x)),ψ | t=T =2( u t (x,T,f) y 1 (x)). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaadaWcaaqaaiabgkGi2kabeI8a5bqaai abgkGi2kaadshaaaGaaGiFamaaBaaaleaacaWG0bGaaGypaiaadsfa aeqaaOGaaGypaiabgkHiTiaaikdacaaIOaGaamyDaiaaiIcacaWG4b GaaGilaiaadsfacaaISaGaamOzaiaaiMcacqGHsislcaWG5bWaaSba aSqaaiaaicdaaeqaaOGaaGikaiaadIhacaaIPaGaaGykaiaaiYcaca aMf8UaeqiYdKNaaGiFamaaBaaaleaacaWG0bGaaGypaiaadsfaaeqa aOGaaGypaiaaikdacaaIOaWaaSaaaeaacqGHciITcaWG1baabaGaey OaIyRaamiDaaaacaaIOaGaamiEaiaaiYcacaWGubGaaGilaiaadAga caaIPaGaeyOeI0IaamyEamaaBaaaleaacaaIXaaabeaakiaaiIcaca WG4bGaaGykaiaaiMcacaaIUaaaaa@65F9@     (28)

С учётом условий (28) выражение для вариации (26) можно записать как

  δ J L 1 2n =( ψ t (x,T),δu)+(ψ(x,T), (δu) t )+2 C ε (f,h)+ R h . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH0oazcaWGkbWaaSbaaSqaaiaadY eadaqhaaqaaiaaigdaaeaacaaIYaGaamOBaaaaaeqaaOGaaGypaiab gkHiTiaaiIcadaWcaaqaaiabgkGi2kabeI8a5bqaaiabgkGi2kaads haaaGaaGikaiaadIhacaaISaGaamivaiaaiMcacaaISaGaeqiTdqMa amyDaiaaiMcacqGHRaWkcaaIOaGaeqiYdKNaaGikaiaadIhacaaISa GaamivaiaaiMcacaaISaWaaSaaaeaacqGHciITcaaIOaGaeqiTdqMa amyDaiaaiMcaaeaacqGHciITcaWG0baaaiaaiMcacqGHRaWkcaaIYa Gaam4qamaaBaaaleaacqaH1oqzaeqaaOGaaGikaiaadAgacaaISaGa amiAaiaaiMcacqGHRaWkcaWGsbWaaSbaaSqaaiaadIgaaeqaaOGaaG Olaaaa@6425@     (29)

Запишем дифференциальное уравнение для ψ(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHipqEcaaIOaGaamiEaiaaiYcaca WG0bGaaGykaaaa@379C@ . Из (29) временно отбросим величину R h MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGsbWaaSbaaSqaaiaadIgaaeqaaa aa@33AD@ , тогда, изменив порядок дифференцирования под знаком интеграла и использовав симметричность оператора L 1 2n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaa0baaSqaaiaaigdaaeaaca aIYaGaamOBaaaaaaa@3525@ , получим

δ J L 1 2n = 0 l ( L 1 2n ( x ) ψ t (x,T)(δu)+ L 1 2n ( x )ψ(x,T) (δu) t +2 C ε 0 T f(x,t)h(x,t)dt)dx= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH0oazcaWGkbWaaSbaaSqaaiaadY eadaqhaaqaaiaaigdaaeaacaaIYaGaamOBaaaaaeqaaOGaaGypamaa pehabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaaiIcacqGHsi slcaWGmbWaa0baaSqaaiaaigdaaeaacaaIYaGaamOBaaaakiaaiIca daWcaaqaaiabgkGi2cqaaiabgkGi2kaadIhaaaGaaGykamaalaaaba GaeyOaIyRaeqiYdKhabaGaeyOaIyRaamiDaaaacaaIOaGaamiEaiaa iYcacaWGubGaaGykaiaaiIcacqaH0oazcaWG1bGaaGykaiabgUcaRi aadYeadaqhaaWcbaGaaGymaaqaaiaaikdacaWGUbaaaOGaaGikamaa laaabaGaeyOaIylabaGaeyOaIyRaamiEaaaacaaIPaGaeqiYdKNaaG ikaiaadIhacaaISaGaamivaiaaiMcadaWcaaqaaiabgkGi2kaaiIca cqaH0oazcaWG1bGaaGykaaqaaiabgkGi2kaadshaaaGaey4kaSIaaG OmaiaadoeadaWgaaWcbaGaeqyTdugabeaakmaapehabeWcbaGaaGim aaqaaiaadsfaa0Gaey4kIipakiaadAgacaaIOaGaamiEaiaaiYcaca WG0bGaaGykaiaadIgacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaa yIW7caWGKbGaamiDaiaaygW7caaIPaGaamizaiaadIhacaaI9aaaaa@865C@

= 0 l ( t ( L 1 2n ( x )ψ(x,t) )| t=T (δu)+ L 1 2n ( x )ψ(x,T) (δu) t +2 C ε 0 T f(x,t)h(x,t)dt)dx= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaI9aWaa8qCaeqaleaacaaIWaaaba GaamiBaaqdcqGHRiI8aOGaaGikaiabgkHiTmaalaaabaGaeyOaIyla baGaeyOaIyRaamiDaaaacaaIOaGaamitamaaDaaaleaacaaIXaaaba GaaGOmaiaad6gaaaGccaaIOaWaaSaaaeaacqGHciITaeaacqGHciIT caWG4baaaiaaiMcacqaHipqEcaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiaaygW7caaIPaGaaGiFamaaBaaaleaacaWG0bGaaGypaiaadsfa aeqaaOGaaGikaiabes7aKjaadwhacaaIPaGaey4kaSIaamitamaaDa aaleaacaaIXaaabaGaaGOmaiaad6gaaaGccaaIOaWaaSaaaeaacqGH ciITaeaacqGHciITcaWG4baaaiaaiMcacqaHipqEcaaIOaGaamiEai aaiYcacaWGubGaaGykamaalaaabaGaeyOaIyRaaGikaiabes7aKjaa dwhacaaIPaaabaGaeyOaIyRaamiDaaaacqGHRaWkcaaIYaGaam4qam aaBaaaleaacqaH1oqzaeqaaOWaa8qCaeqaleaacaaIWaaabaGaamiv aaqdcqGHRiI8aOGaamOzaiaaiIcacaWG4bGaaGilaiaadshacaaIPa GaamiAaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGjcVlaadsga caWG0bGaaGykaiaadsgacaWG4bGaaGypaaaa@85AF@

= 0 l ( 0 T t ( t ( L 1 2n ( x )ψ(x,t))(δu)+ L 1 2n ( x )ψ(x,t) (δu) t )dt+2 C ε 0 T f(x,t)h(x,t)dt)dx= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaI9aWaa8qCaeqaleaacaaIWaaaba GaamiBaaqdcqGHRiI8aOGaaGikamaapehabeWcbaGaaGimaaqaaiaa dsfaa0Gaey4kIipakmaalaaabaGaeyOaIylabaGaeyOaIyRaamiDaa aacaaIOaGaeyOeI0YaaSaaaeaacqGHciITaeaacqGHciITcaWG0baa aiaaiIcacaWGmbWaa0baaSqaaiaaigdaaeaacaaIYaGaamOBaaaaki aaiIcadaWcaaqaaiabgkGi2cqaaiabgkGi2kaadIhaaaGaaGykaiab eI8a5jaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGykaiaaiIcacq aH0oazcaWG1bGaaGykaiabgUcaRiaadYeadaqhaaWcbaGaaGymaaqa aiaaikdacaWGUbaaaOGaaGikamaalaaabaGaeyOaIylabaGaeyOaIy RaamiEaaaacaaIPaGaeqiYdKNaaGikaiaadIhacaaISaGaamiDaiaa iMcadaWcaaqaaiabgkGi2kaaiIcacqaH0oazcaWG1bGaaGykaaqaai abgkGi2kaadshaaaGaaGykaiaadsgacaWG0bGaey4kaSIaaGOmaiaa doeadaWgaaWcbaGaeqyTdugabeaakmaapehabeWcbaGaaGimaaqaai aadsfaa0Gaey4kIipakiaadAgacaaIOaGaamiEaiaaiYcacaWG0bGa aGykaiaadIgacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaayIW7ca WGKbGaamiDaiaaiMcacaWGKbGaamiEaiaai2daaaa@8B93@

= 0 l 0 T ( L 1 2n ( x ) 2 t 2 ψ(x,t)(δu)+ L 1 2n ( x )ψ(x,t) 2 t 2 (δu)+2 C ε f(x,t)h(x,t))dtdx. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaI9aWaa8qCaeqaleaacaaIWaaaba GaamiBaaqdcqGHRiI8aOWaa8qCaeqaleaacaaIWaaabaGaamivaaqd cqGHRiI8aOGaaGikaiabgkHiTiaadYeadaqhaaWcbaGaaGymaaqaai aaikdacaWGUbaaaOGaaGikamaalaaabaGaeyOaIylabaGaeyOaIyRa amiEaaaacaaIPaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaa aakeaacqGHciITcaWG0bWaaWbaaSqabeaacaaIYaaaaaaakiabeI8a 5jaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGikaiabes7aKjaadw hacaaIPaGaey4kaSIaamitamaaDaaaleaacaaIXaaabaGaaGOmaiaa d6gaaaGccaaIOaWaaSaaaeaacqGHciITaeaacqGHciITcaWG4baaai aaiMcacqaHipqEcaaIOaGaamiEaiaaiYcacaWG0bGaaGykamaalaaa baGaeyOaIy7aaWbaaSqabeaacaaIYaaaaaGcbaGaeyOaIyRaamiDam aaCaaaleqabaGaaGOmaaaaaaGccaaIOaGaeqiTdqMaamyDaiaaiMca cqGHRaWkcaaIYaGaam4qamaaBaaaleaacqaH1oqzaeqaaOGaamOzai aaiIcacaWG4bGaaGilaiaadshacaaIPaGaamiAaiaaiIcacaWG4bGa aGilaiaadshacaaIPaGaaGykaiaadsgacaWG0bGaaGjcVlaadsgaca WG4bGaaGOlaaaa@82C8@

Учитывая симметричность оператора L12n/x (см. (13)), преобразуем последний интеграл:

δ J L 1 2n = 0 l 0 T ( L 1 2n ( x ) 2 t 2 ψ(x,t)(δu)+ψ(x,t) L 1 2n ( x ) 2 t 2 (δu)+2 C ε f(x,t)h(x,t))dtdx, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH0oazcaWGkbWaaSbaaSqaaiaadY eadaqhaaqaaiaaigdaaeaacaaIYaGaamOBaaaaaeqaaOGaaGypamaa pehabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakmaapehabeWcba GaaGimaaqaaiaadsfaa0Gaey4kIipakiaaiIcacqGHsislcaWGmbWa a0baaSqaaiaaigdaaeaacaaIYaGaamOBaaaakiaaiIcadaWcaaqaai abgkGi2cqaaiabgkGi2kaadIhaaaGaaGykamaalaaabaGaeyOaIy7a aWbaaSqabeaacaaIYaaaaaGcbaGaeyOaIyRaamiDamaaCaaaleqaba GaaGOmaaaaaaGccqaHipqEcaaIOaGaamiEaiaaiYcacaWG0bGaaGyk aiaaiIcacqaH0oazcaWG1bGaaGykaiabgUcaRiabeI8a5jaaiIcaca WG4bGaaGilaiaadshacaaIPaGaeyyXICTaamitamaaDaaaleaacaaI XaaabaGaaGOmaiaad6gaaaGccaaIOaWaaSaaaeaacqGHciITaeaacq GHciITcaWG4baaaiaaiMcadaWcaaqaaiabgkGi2oaaCaaaleqabaGa aGOmaaaaaOqaaiabgkGi2kaadshadaahaaWcbeqaaiaaikdaaaaaaO GaaGikaiabes7aKjaadwhacaaIPaGaey4kaSIaaGOmaiaadoeadaWg aaWcbaGaeqyTdugabeaakiaadAgacaaIOaGaamiEaiaaiYcacaWG0b GaaGykaiaadIgacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiMca caWGKbGaamiDaiaayIW7caWGKbGaamiEaiaaiYcaaaa@8B17@

выражая из (24) слагаемое L12n(/x)(2(δu)/t2), получаем

δ J L 1 2n = 0 l 0 T ( L 1 2n ( x ) 2 t 2 ψ(x,t)δu+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH0oazcaWGkbWaaSbaaSqaaiaadY eadaqhaaqaaiaaigdaaeaacaaIYaGaamOBaaaaaeqaaOGaaGypamaa pehabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakmaapehabeWcba GaaGimaaqaaiaadsfaa0Gaey4kIipakiaaiIcacqGHsislcaWGmbWa a0baaSqaaiaaigdaaeaacaaIYaGaamOBaaaakiaaiIcadaWcaaqaai abgkGi2cqaaiabgkGi2kaadIhaaaGaaGykamaalaaabaGaeyOaIy7a aWbaaSqabeaacaaIYaaaaaGcbaGaeyOaIyRaamiDamaaCaaaleqaba GaaGOmaaaaaaGccqaHipqEcaaIOaGaamiEaiaaiYcacaWG0bGaaGyk aiabgwSixlabes7aKjaadwhacqGHRaWkaaa@5C65@

+ψ(x,t)(h(x,t) L 2 2n ( x ) (δu) t L 3 2n ( x )(δu))+2 C ε f(x,t)h(x,t))dtdx. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqGHRaWkcqaHipqEcaaIOaGaamiEai aaiYcacaWG0bGaaGykaiaaiIcacaWGObGaaGikaiaadIhacaaISaGa amiDaiaaiMcacqGHsislcaWGmbWaa0baaSqaaiaaikdaaeaacaaIYa GaamOBaaaakiaaiIcadaWcaaqaaiabgkGi2cqaaiabgkGi2kaadIha aaGaaGykamaalaaabaGaeyOaIyRaaGikaiabes7aKjaadwhacaaIPa aabaGaeyOaIyRaamiDaaaacqGHsislcaWGmbWaa0baaSqaaiaaioda aeaacaaIYaGaamOBaaaakiaaiIcadaWcaaqaaiabgkGi2cqaaiabgk Gi2kaadIhaaaGaaGykaiaaiIcacqaH0oazcaWG1bGaaGykaiaaygW7 caaIPaGaey4kaSIaaGOmaiaadoeadaWgaaWcbaGaeqyTdugabeaaki aadAgacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadIgacaaIOaGa amiEaiaaiYcacaWG0bGaaGykaiaaygW7caaIPaGaaGjcVlaadsgaca WG0bGaaGjcVlaadsgacaWG4bGaaGOlaaaa@77A1@

Здесь после раскрытия скобок и группировки слагаемых с сомножителем h(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGObGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36BB@  окончательно будем иметь

δ J L 1 2n = 0 l 0 T ( L 1 2n ( x ) 2 ψ t 2 (δu)ψ L 2 2n ( x ) (δu) t ψ L 3 2n ( x )(δu)+(ψ+2 C ε f)h)dtdx. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH0oazcaWGkbWaaSbaaSqaaiaadY eadaqhaaqaaiaaigdaaeaacaaIYaGaamOBaaaaaeqaaOGaaGypamaa pehabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakmaapehabeWcba GaaGimaaqaaiaadsfaa0Gaey4kIipakiaaiIcacqGHsislcaWGmbWa a0baaSqaaiaaigdaaeaacaaIYaGaamOBaaaakiaaiIcadaWcaaqaai abgkGi2cqaaiabgkGi2kaadIhaaaGaaGykamaalaaabaGaeyOaIy7a aWbaaSqabeaacaaIYaaaaOGaeqiYdKhabaGaeyOaIyRaamiDamaaCa aaleqabaGaaGOmaaaaaaGccaaIOaGaeqiTdqMaamyDaiaaiMcacqGH sislcqaHipqEcaWGmbWaa0baaSqaaiaaikdaaeaacaaIYaGaamOBaa aakiaaiIcadaWcaaqaaiabgkGi2cqaaiabgkGi2kaadIhaaaGaaGyk amaalaaabaGaeyOaIyRaaGikaiabes7aKjaadwhacaaIPaaabaGaey OaIyRaamiDaaaacqGHsislcqaHipqEcaWGmbWaa0baaSqaaiaaioda aeaacaaIYaGaamOBaaaakiaaiIcadaWcaaqaaiabgkGi2cqaaiabgk Gi2kaadIhaaaGaaGykaiaaiIcacqaH0oazcaWG1bGaaGykaiabgUca RiaaiIcacqaHipqEcqGHRaWkcaaIYaGaam4qamaaBaaaleaacqaH1o qzaeqaaOGaamOzaiaaiMcacaWGObGaaGykaiaadsgacaWG0bGaaGjc VlaadsgacaWG4bGaaGOlaaaa@8A37@     (30)

В формуле (30) для краткости не указываем аргументы (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaaaa@35CE@ .

Определим далее сопряжённое уравнение

δu( L 1 2n ( x ) 2 ψ t 2 + L 3 2n ( x )ψ)+ψ L 2 2n ( x ) (δu) t =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH0oazcaWG1bGaaGikaiaadYeada qhaaWcbaGaaGymaaqaaiaaikdacaWGUbaaaOGaaGikamaalaaabaGa eyOaIylabaGaeyOaIyRaamiEaaaacaaIPaWaaSaaaeaacqGHciITda ahaaWcbeqaaiaaikdaaaGccqaHipqEaeaacqGHciITcaWG0bWaaWba aSqabeaacaaIYaaaaaaakiabgUcaRiaadYeadaqhaaWcbaGaaG4maa qaaiaaikdacaWGUbaaaOGaaGikamaalaaabaGaeyOaIylabaGaeyOa IyRaamiEaaaacaaIPaGaeqiYdKNaaGykaiabgUcaRiabeI8a5jaadY eadaqhaaWcbaGaaGOmaaqaaiaaikdacaWGUbaaaOGaaGikamaalaaa baGaeyOaIylabaGaeyOaIyRaamiEaaaacaaIPaWaaSaaaeaacqGHci ITcaaIOaGaeqiTdqMaamyDaiaaiMcaaeaacqGHciITcaWG0baaaiaa i2dacaaIWaGaaGOlaaaa@66CF@      (31)

Тогда из (30) с учётом (31) получаем окончательное выражение для вариации:

δ J L 1 2n = 0 l 0 T ψ(x,t)+2 C ε f(x,t) h(x,t)dtdx+ R h . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH0oazcaWGkbWaaSbaaSqaaiaadY eadaqhaaqaaiaaigdaaeaacaaIYaGaamOBaaaaaeqaaOGaaGypamaa pehabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakmaapehabeWcba GaaGimaaqaaiaadsfaa0Gaey4kIipakmaabmaabaGaeqiYdKNaaGik aiaadIhacaaISaGaamiDaiaaiMcacqGHRaWkcaaIYaGaam4qamaaBa aaleaacqaH1oqzaeqaaOGaamOzaiaaiIcacaWG4bGaaGilaiaadsha caaIPaaacaGLOaGaayzkaaGaamiAaiaaiIcacaWG4bGaaGilaiaads hacaaIPaGaaGjcVlaadsgacaWG0bGaaGjcVlaadsgacaWG4bGaey4k aSIaamOuamaaBaaaleaacaWGObaabeaakiaai6caaaa@60D4@     (32)

Формула (32) даёт представление приращения функционала (23), которое линейно относительно приращения управления h(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGObGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36BB@ . Если докажем, что R h MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGsbWaaSbaaSqaaiaadIgaaeqaaa aa@33AD@  имеет более высокий порядок малости относительно приращения h(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGObGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36BB@ , то формула (32) даст явное выражение градиента функционала, что позволит использовать его для построения градиентных методов минимизации. Далее сформулируем вспомогательное утверждение.

Теорема 2 [энергетическое тождество]. Пусть L12n/x, L32n/x  MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  дифференциальные операторы, которые имеют вид

  L 1 2n x = k=0 n (1) k p 1,2k 2 2k x 2k , L 3 2n ( x )= k=0 n (1) k p 3,2k 2 2k x 2k , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaa0baaSqaaiaaigdaaeaaca aIYaGaamOBaaaakmaabmaabaWaaSaaaeaacqGHciITaeaacqGHciIT caWG4baaaaGaayjkaiaawMcaaiaai2dadaaeWbqabSqaaiaadUgaca aI9aGaaGimaaqaaiaad6gaa0GaeyyeIuoakiaaiIcacqGHsislcaaI XaGaaGykamaaCaaaleqabaGaam4AaaaakiaadchadaqhaaWcbaGaaG ymaiaaiYcacaaIYaGaam4AaaqaaiaaikdaaaGcdaWcaaqaaiabgkGi 2oaaCaaaleqabaGaaGOmaiaadUgaaaaakeaacqGHciITcaWG4bWaaW baaSqabeaacaaIYaGaam4AaaaaaaGccaaISaGaaGzbVlaadYeadaqh aaWcbaGaaG4maaqaaiaaikdacaWGUbaaaOGaaGikamaalaaabaGaey OaIylabaGaeyOaIyRaamiEaaaacaaIPaGaaGypamaaqahabeWcbaGa am4Aaiaai2dacaaIWaaabaGaamOBaaqdcqGHris5aOGaaGikaiabgk HiTiaaigdacaaIPaWaaWbaaSqabeaacaWGRbaaaOGaamiCamaaDaaa leaacaaIZaGaaGilaiaaikdacaWGRbaabaGaaGOmaaaakmaalaaaba GaeyOaIy7aaWbaaSqabeaacaaIYaGaam4AaaaaaOqaaiabgkGi2kaa dIhadaahaaWcbeqaaiaaikdacaWGRbaaaaaakiaaiYcaaaa@74DF@

а оператор L22n/x  MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  оператор общего вида. Определим величину

E(τ)= 1 2 [ 0 l k=0 n ( p 1,2k 2 ( k+1 u x k t ) 2 + p 3,2k 2 ( k u x k ) 2 )dx ]| t=τ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGfbGaaGikaiabes8a0jaaiMcaca aI9aWaaSaaaeaacaaIXaaabaGaaGOmaaaacaaIBbGaaGjcVpaapeha beWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakmaaqahabeWcbaGaam 4Aaiaai2dacaaIWaaabaGaamOBaaqdcqGHris5aOGaaGikaiaadcha daqhaaWcbaGaaGymaiaaiYcacaaIYaGaam4AaaqaaiaaikdaaaGcca aIOaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaadUgacqGHRaWkcaaI XaaaaOGaamyDaaqaaiabgkGi2kaadIhadaahaaWcbeqaaiaadUgaaa GccqGHciITcaWG0baaaiaaiMcadaahaaWcbeqaaiaaygW7caaIYaaa aOGaey4kaSIaamiCamaaDaaaleaacaaIZaGaaGilaiaaikdacaWGRb aabaGaaGOmaaaakiaaiIcadaWcaaqaaiabgkGi2oaaCaaaleqabaGa am4AaaaakiaadwhaaeaacqGHciITcaWG4bWaaWbaaSqabeaacaWGRb aaaaaakiaaiMcadaahaaWcbeqaaiaaygW7caaIYaaaaOGaaGykaiaa dsgacaWG4bGaaGyxaiaaiYhadaWgaaWcbaGaamiDaiaai2dacqaHep aDaeqaaOGaaGilaaaa@72DE@     (33)

где u(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C8@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  решение уравнения (1), удовлетворяющее краевым условиям (2) и начальным условиям (3). Тогда для любого τ>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHepaDcaaI+aGaaGimaaaa@3504@  имеет место тождество

  E(τ)E(0)+ 0 l 0 τ ( L 2 2n ( x ) u t ) u t dtdx= 0 l 0 τ F(x,t) u t dtdx. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGfbGaaGikaiabes8a0jaaiMcacq GHsislcaWGfbGaaGikaiaaicdacaaIPaGaey4kaSYaa8qCaeqaleaa caaIWaaabaGaamiBaaqdcqGHRiI8aOWaa8qCaeqaleaacaaIWaaaba GaeqiXdqhaniabgUIiYdGccaaIOaGaamitamaaDaaaleaacaaIYaaa baGaaGOmaiaad6gaaaGccaaIOaWaaSaaaeaacqGHciITaeaacqGHci ITcaWG4baaaiaaiMcadaWcaaqaaiabgkGi2kaadwhaaeaacqGHciIT caWG0baaaiaaiMcadaWcaaqaaiabgkGi2kaadwhaaeaacqGHciITca WG0baaaiaayIW7caWGKbGaamiDaiaayIW7caWGKbGaamiEaiaai2da daWdXbqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGcdaWdXbqabS qaaiaaicdaaeaacqaHepaDa0Gaey4kIipakiaadAeacaaIOaGaamiE aiaaiYcacaWG0bGaaGykamaalaaabaGaeyOaIyRaamyDaaqaaiabgk Gi2kaadshaaaGaaGjcVlaadsgacaWG0bGaaGjcVlaadsgacaWG4bGa aGOlaaaa@793F@     (34)

Доказательство. Умножим уравнение (1) на /x и проинтегрируем по области Ω(τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqqHPoWvcaaIOaGaeqiXdqNaaGykaa aa@3675@ , а после использования леммы немедленно получим утверждение теоремы.

Установленную теорему можно применять для доказательства единственности решения краевых задач.

Следствие [единственность решения]. Пусть существует решение u(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C8@  начально-краевой задачи (1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@ (3) и выполняется равенство

0 l 0 τ ( L 2 2n ( x ) u t ) u t dtdx=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWGSb aaniabgUIiYdGcdaWdXbqabSqaaiaaicdaaeaacqaHepaDa0Gaey4k IipakiaaiIcacaWGmbWaa0baaSqaaiaaikdaaeaacaaIYaGaamOBaa aakiaaiIcadaWcaaqaaiabgkGi2cqaaiabgkGi2kaadIhaaaGaaGyk amaalaaabaGaeyOaIyRaamyDaaqaaiabgkGi2kaadshaaaGaaGykam aalaaabaGaeyOaIyRaamyDaaqaaiabgkGi2kaadshaaaGaaGjcVlaa dsgacaWG0bGaaGjcVlaadsgacaWG4bGaaGypaiaaicdacaaIUaaaaa@57A6@

Тогда это решение единственно.

Доказательство. Пусть u(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C8@ , w(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG3bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36CA@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  различные (несовпадающие) решения начально-краевой задачи. Рассмотрим функцию v(x,t)=u(x,t)w(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG2bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaamyDaiaaiIcacaWG4bGaaGilaiaadshacaaI PaGaeyOeI0Iaam4DaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaaaa@4295@ . Она является решением задачи (1), (2) при F(x,t)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGgbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaaGimaaaa@381A@  и при нулевых начальных условиях (3). По теореме для функции v(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG2bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C9@  имеем E(τ)E(0)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGfbGaaGikaiabes8a0jaaiMcacq GHsislcaWGfbGaaGikaiaaicdacaaIPaGaaGypaiaaicdaaaa@3B08@  и E(τ)=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGfbGaaGikaiabes8a0jaaiMcaca aI9aGaaGimaiaai6caaaa@37EA@  Тогда в силу (34) получаем v(x,t)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG2bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHHjIUcaaIWaaaaa@394C@ , откуда u(x,t)=w(x,t). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaam4DaiaaiIcacaWG4bGaaGilaiaadshacaaI PaGaaGOlaaaa@3D54@  

Теорема 3 [оценка остатка R h MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGsbWaaSbaaSqaaiaadIgaaeqaaa aa@33AD@ ]. Пусть

  ( L 2 2n ( x ) δu t , δu t )0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaGaamitamaaDaaaleaacaaIYa aabaGaaGOmaiaad6gaaaGccaaIOaWaaSaaaeaacqGHciITaeaacqGH ciITcaWG4baaaiaaiMcadaWcaaqaaiabgkGi2kabes7aKjaadwhaae aacqGHciITcaWG0baaaiaaiYcadaWcaaqaaiabgkGi2kabes7aKjaa dwhaaeaacqGHciITcaWG0baaaiaaiMcacqGHLjYScaaIWaaaaa@4BF1@

и выполнены условия теоремы 2. Тогда для величины R h MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGsbWaaSbaaSqaaiaadIgaaeqaaa aa@33AD@  из (27) имеет место оценка

R h =O( 0 l 0 T h 2 (x,t)dtdx). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGsbWaaSbaaSqaaiaadIgaaeqaaO GaaGypaiaad+eacaaIOaGaaGjcVpaapehabeWcbaGaaGimaaqaaiaa dYgaa0Gaey4kIipakmaapehabeWcbaGaaGimaaqaaiaadsfaa0Gaey 4kIipakiaadIgadaahaaWcbeqaaiaaikdaaaGccaaIOaGaamiEaiaa iYcacaWG0bGaaGykaiaayIW7caWGKbGaamiDaiaadsgacaWG4bGaaG ykaiaai6caaaa@4C70@

Доказательство. Рассмотрим первое и второе слагаемые в (27). Раскрыв скалярное произведение, с учётом леммы будем иметь

[ (δu) t , (δu) t ]= 0 l 0 T ( L 1 2n ( x ) (δu) t ) (δu) t dtdx. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIBbWaaSaaaeaacqGHciITcaaIOa GaeqiTdqMaamyDaiaaiMcaaeaacqGHciITcaWG0baaaiaaiYcadaWc aaqaaiabgkGi2kaaiIcacqaH0oazcaWG1bGaaGykaaqaaiabgkGi2k aadshaaaGaaGyxaiaai2dadaWdXbqabSqaaiaaicdaaeaacaWGSbaa niabgUIiYdGcdaWdXbqabSqaaiaaicdaaeaacaWGubaaniabgUIiYd GccaaIOaGaamitamaaDaaaleaacaaIXaaabaGaaGOmaiaad6gaaaGc caaIOaWaaSaaaeaacqGHciITaeaacqGHciITcaWG4baaaiaaiMcada WcaaqaaiabgkGi2kaaiIcacqaH0oazcaWG1bGaaGykaaqaaiabgkGi 2kaadshaaaGaaGykamaalaaabaGaeyOaIyRaaGikaiabes7aKjaadw hacaaIPaaabaGaeyOaIyRaamiDaaaacaaMi8UaamizaiaadshacaaM i8UaamizaiaadIhacaaIUaaaaa@6E47@

Следующим шагом уравнение (24) скалярно умножим на δu/x:

[ 2 (δu) t 2 , (δu) t ]+( L 2 2n ( x ) (δu) t , (δu) t )+( L 3 2n ( x )(δu), (δu) t )=(h(x,t), (δu) t ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIBbWaaSaaaeaacqGHciITdaahaa WcbeqaaiaaikdaaaGccaaIOaGaeqiTdqMaamyDaiaaiMcaaeaacqGH ciITcaWG0bWaaWbaaSqabeaacaaIYaaaaaaakiaaiYcadaWcaaqaai abgkGi2kaaiIcacqaH0oazcaWG1bGaaGykaaqaaiabgkGi2kaadsha aaGaaGyxaiabgUcaRiaaiIcacaWGmbWaa0baaSqaaiaaikdaaeaaca aIYaGaamOBaaaakiaaiIcadaWcaaqaaiabgkGi2cqaaiabgkGi2kaa dIhaaaGaaGykamaalaaabaGaeyOaIyRaaGikaiabes7aKjaadwhaca aIPaaabaGaeyOaIyRaamiDaaaacaaISaWaaSaaaeaacqGHciITcaaI OaGaeqiTdqMaamyDaiaaiMcaaeaacqGHciITcaWG0baaaiaaiMcacq GHRaWkcaaIOaGaamitamaaDaaaleaacaaIZaaabaGaaGOmaiaad6ga aaGccaaIOaWaaSaaaeaacqGHciITaeaacqGHciITcaWG4baaaiaaiM cacaaIOaGaeqiTdqMaamyDaiaaiMcacaaISaWaaSaaaeaacqGHciIT caaIOaGaeqiTdqMaamyDaiaaiMcaaeaacqGHciITcaWG0baaaiaaiM cacaaI9aGaaGikaiaadIgacaaIOaGaamiEaiaaiYcacaWG0bGaaGyk aiaaiYcadaWcaaqaaiabgkGi2kaaiIcacqaH0oazcaWG1bGaaGykaa qaaiabgkGi2kaadshaaaGaaGykaiaai6caaaa@8934@

Применив теорему 2 для функции δu MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH0oazcaWG1baaaa@345C@ , будем иметь E(0)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGfbGaaGikaiaaicdacaaIPaGaaG ypaiaaicdaaaa@3627@ , и тогда из (34) получим

E(τ)+( L 2 2n ( x ) (δu) t , (δu) t )= 0 τ 0 l h(x,t) (δu) t dxdt. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGfbGaaGikaiabes8a0jaaiMcacq GHRaWkcaaIOaGaamitamaaDaaaleaacaaIYaaabaGaaGOmaiaad6ga aaGccaaIOaWaaSaaaeaacqGHciITaeaacqGHciITcaWG4baaaiaaiM cadaWcaaqaaiabgkGi2kaaiIcacqaH0oazcaWG1bGaaGykaaqaaiab gkGi2kaadshaaaGaaGilamaalaaabaGaeyOaIyRaaGikaiabes7aKj aadwhacaaIPaaabaGaeyOaIyRaamiDaaaacaaIPaGaaGypamaapeha beWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOWaa8qCaeqaleaaca aIWaaabaGaamiBaaqdcqGHRiI8aOGaamiAaiaaiIcacaWG4bGaaGil aiaadshacaaIPaWaaSaaaeaacqGHciITcaaIOaGaeqiTdqMaamyDai aaiMcaaeaacqGHciITcaWG0baaaiaayIW7caWGKbGaamiEaiaayIW7 caWGKbGaamiDaiaai6caaaa@6F63@     (35)

С помощью (33) оценим левую часть (35):

E(τ)+( L 2 2n ( x ) (δu) t , (δu) t )[ 0 l k=0 n p 1,2k 2 2 ( k (δu) x k ) 2 dx ]| t=τ = 1 2 ( (δu) t , (δu) t ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGfbGaaGikaiabes8a0jaaiMcacq GHRaWkcaaIOaGaamitamaaDaaaleaacaaIYaaabaGaaGOmaiaad6ga aaGccaaIOaWaaSaaaeaacqGHciITaeaacqGHciITcaWG4baaaiaaiM cadaWcaaqaaiabgkGi2kaaiIcacqaH0oazcaWG1bGaaGykaaqaaiab gkGi2kaadshaaaGaaGilamaalaaabaGaeyOaIyRaaGikaiabes7aKj aadwhacaaIPaaabaGaeyOaIyRaamiDaaaacaaIPaGaeyyzImRaaG4w aiaayIW7daWdXbqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGcda aeWbqabSqaaiaadUgacaaI9aGaaGimaaqaaiaad6gaa0GaeyyeIuoa kmaalaaabaGaamiCamaaDaaaleaacaaIXaGaaGilaiaaikdacaWGRb aabaGaaGOmaaaaaOqaaiaaikdaaaGaaGikamaalaaabaGaeyOaIy7a aWbaaSqabeaacaWGRbaaaOGaaGikaiabes7aKjaadwhacaaIPaaaba GaeyOaIyRaamiEamaaCaaaleqabaGaam4AaaaaaaGccaaIPaWaaWba aSqabeaacaaMb8UaaGOmaaaakiaadsgacaWG4bGaaGyxaiaaiYhada WgaaWcbaGaamiDaiaai2dacqaHepaDaeqaaOGaaGypamaalaaabaGa aGymaaqaaiaaikdaaaGaaGikamaalaaabaGaeyOaIyRaaGikaiabes 7aKjaadwhacaaIPaaabaGaeyOaIyRaamiDaaaacaaISaWaaSaaaeaa cqGHciITcaaIOaGaeqiTdqMaamyDaiaaiMcaaeaacqGHciITcaWG0b aaaiaaiMcacaaIUaaaaa@8F5C@

Теперь возьмём ε>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH1oqzcaaI+aGaaGimaaaa@34E6@ и оценим в (35) правую часть, используя лемму 2:

  1 2 ( (δu) t , (δu) t ) 0 τ 0 l h(x,t) (δu) t dxdt 1 2ε 0 τ 0 l h 2 (x,t)dxdt+ ε 2 0 τ 0 l ( (δu) t ) 2 dxdt MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaadaWcaaqaaiaaigdaaeaacaaIYaaaai aaiIcadaWcaaqaaiabgkGi2kaaiIcacqaH0oazcaWG1bGaaGykaaqa aiabgkGi2kaadshaaaGaaGilamaalaaabaGaeyOaIyRaaGikaiabes 7aKjaadwhacaaIPaaabaGaeyOaIyRaamiDaaaacaaIPaGaeyizIm6a a8qCaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWdXbqabS qaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGObGaaGikaiaadIha caaISaGaamiDaiaaiMcadaWcaaqaaiabgkGi2kaaiIcacqaH0oazca WG1bGaaGykaaqaaiabgkGi2kaadshaaaGaaGjcVlaadsgacaWG4bGa aGjcVlaadsgacaWG0bGaeyizIm6aaSaaaeaacaaIXaaabaGaaGOmai abew7aLbaadaWdXbqabSqaaiaaicdaaeaacqaHepaDa0Gaey4kIipa kmaapehabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaadIgada ahaaWcbeqaaiaaikdaaaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGyk aiaayIW7caWGKbGaamiEaiaayIW7caWGKbGaamiDaiabgUcaRmaala aabaGaeqyTdugabaGaaGOmaaaadaWdXbqabSqaaiaaicdaaeaacqaH epaDa0Gaey4kIipakmaapehabeWcbaGaaGimaaqaaiaadYgaa0Gaey 4kIipakiaaiIcadaWcaaqaaiabgkGi2kaaiIcacqaH0oazcaWG1bGa aGykaaqaaiabgkGi2kaadshaaaGaaGykamaaCaaaleqabaGaaGzaVl aaikdaaaGccaWGKbGaamiEaiaayIW7caWGKbGaamiDaiabgsMiJcaa @9D99@

1 2ε 0 τ 0 l h 2 (x,t)dxdt+ ε σ l 2 0 τ ( (δu) t , (δu) t )dt. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqGHKjYOdaWcaaqaaiaaigdaaeaaca aIYaGaeqyTdugaamaapehabeWcbaGaaGimaaqaaiabes8a0bqdcqGH RiI8aOWaa8qCaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaam iAamaaCaaaleqabaGaaGOmaaaakiaaiIcacaWG4bGaaGilaiaadsha caaIPaGaaGjcVlaadsgacaWG4bGaaGjcVlaadsgacaWG0bGaey4kaS YaaSaaaeaacqaH1oqzcqaHdpWCdaWgaaWcbaGaamiBaaqabaaakeaa caaIYaaaamaapehabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aO GaaGikamaalaaabaGaeyOaIyRaaGikaiabes7aKjaadwhacaaIPaaa baGaeyOaIyRaamiDaaaacaaISaWaaSaaaeaacqGHciITcaaIOaGaeq iTdqMaamyDaiaaiMcaaeaacqGHciITcaWG0baaaiaaiMcacaWGKbGa amiDaiaai6caaaa@6C26@

Далее, умножив на 2 и положив ε=1 σ l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH1oqzcaaI9aGaaGymaiabeo8aZn aaBaaaleaacaWGSbaabeaaaaa@37C6@ , получим неравенство

  ( (δu) t , (δu) t ) σ l 0 τ 0 l h 2 (x,t)dxdt+ 0 τ ( (δu) t , (δu) t )dt, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaWaaSaaaeaacqGHciITcaaIOa GaeqiTdqMaamyDaiaaiMcaaeaacqGHciITcaWG0baaaiaaiYcadaWc aaqaaiabgkGi2kaaiIcacqaH0oazcaWG1bGaaGykaaqaaiabgkGi2k aadshaaaGaaGykaiabgsMiJkabeo8aZnaaBaaaleaacaWGSbaabeaa kmaapehabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOWaa8qCae qaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamiAamaaCaaaleqa baGaaGOmaaaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGjcVl aadsgacaWG4bGaaGjcVlaadsgacaWG0bGaey4kaSYaa8qCaeqaleaa caaIWaaabaGaeqiXdqhaniabgUIiYdGccaaIOaWaaSaaaeaacqGHci ITcaaIOaGaeqiTdqMaamyDaiaaiMcaaeaacqGHciITcaWG0baaaiaa iYcadaWcaaqaaiabgkGi2kaaiIcacqaH0oazcaWG1bGaaGykaaqaai abgkGi2kaadshaaaGaaGykaiaadsgacaWG0bGaaGilaaaa@7850@

к которому применим неравенство Гронуолла:

( (δu) t , (δu) t ) e T σ l 0 T 0 l h 2 (x,t)dxdt. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaWaaSaaaeaacqGHciITcaaIOa GaeqiTdqMaamyDaiaaiMcaaeaacqGHciITcaWG0baaaiaaiYcadaWc aaqaaiabgkGi2kaaiIcacqaH0oazcaWG1bGaaGykaaqaaiabgkGi2k aadshaaaGaaGykaiabgsMiJkaadwgadaahaaWcbeqaaiaadsfaaaGc cqaHdpWCdaWgaaWcbaGaamiBaaqabaGcdaWdXbqabSqaaiaaicdaae aacaWGubaaniabgUIiYdGcdaWdXbqabSqaaiaaicdaaeaacaWGSbaa niabgUIiYdGccaWGObWaaWbaaSqabeaacaaIYaaaaOGaaGikaiaadI hacaaISaGaamiDaiaaiMcacaaMi8UaamizaiaadIhacaaMi8Uaamiz aiaadshacaaIUaaaaa@5FDC@      (36)

Выполним заключительную выкладку и будем иметь

(δu,δu)= 0 T 0 l k=0 n p 1,2k 2 ( k (δu) x k ) 2 dxdt. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaGaeqiTdqMaamyDaiaaiYcacq aH0oazcaWG1bGaaGykaiaai2dadaWdXbqabSqaaiaaicdaaeaacaWG ubaaniabgUIiYdGcdaWdXbqabSqaaiaaicdaaeaacaWGSbaaniabgU IiYdGccaaMi8+aaabCaeqaleaacaWGRbGaaGypaiaaicdaaeaacaWG UbaaniabggHiLdGccaWGWbWaa0baaSqaaiaaigdacaaISaGaaGOmai aadUgaaeaacaaIYaaaaOGaaGikamaalaaabaGaeyOaIy7aaWbaaSqa beaacaWGRbaaaOGaaGikaiabes7aKjaadwhacaaIPaaabaGaeyOaIy RaamiEamaaCaaaleqabaGaam4AaaaaaaGccaaIPaWaaWbaaSqabeaa caaMb8UaaGOmaaaakiaadsgacaWG4bGaaGjcVlaadsgacaWG0bGaaG Olaaaa@6268@

Для kδu/xk2 воспользуемся оценкой (19), но только через производную по t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG0baaaa@32B6@ :

( k (δu) x k ) 2 C k 0 τ ( t k (δu) x k ) 2 dt, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaWaaSaaaeaacqGHciITdaahaa WcbeqaaiaadUgaaaGccaaIOaGaeqiTdqMaamyDaiaaiMcaaeaacqGH ciITcaWG4bWaaWbaaSqabeaacaWGRbaaaaaakiaaiMcadaahaaWcbe qaaiaaygW7caaIYaaaaOGaeyizImQaam4qamaaBaaaleaacaWGRbaa beaakmaapehabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOGaaG ikamaalaaabaGaeyOaIylabaGaeyOaIyRaamiDaaaadaWcaaqaaiab gkGi2oaaCaaaleqabaGaam4AaaaakiaaiIcacqaH0oazcaWG1bGaaG ykaaqaaiabgkGi2kaadIhadaahaaWcbeqaaiaadUgaaaaaaOGaaGyk amaaCaaaleqabaGaaGzaVlaaikdaaaGccaWGKbGaamiDaiaaiYcaaa a@5CDA@

и получим неравенство

(δu,δu)T max k C k 0 T 0 l k=0 n p 1,2k 2 ( t k (δu) x k ) 2 dxdtθ 0 T 0 l h 2 (x,t)dxdt, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaGaeqiTdqMaamyDaiaaiYcacq aH0oazcaWG1bGaaGykaiabgsMiJkaadsfadaGfqbqabSqaaiaadUga aeqakeaaciGGTbGaaiyyaiaacIhaaaGaam4qamaaBaaaleaacaWGRb aabeaakmaapehabeWcbaGaaGimaaqaaiaadsfaa0Gaey4kIipakmaa pehabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaayIW7daaeWb qabSqaaiaadUgacaaI9aGaaGimaaqaaiaad6gaa0GaeyyeIuoakiaa dchadaqhaaWcbaGaaGymaiaaiYcacaaIYaGaam4Aaaqaaiaaikdaaa GccaaIOaWaaSaaaeaacqGHciITaeaacqGHciITcaWG0baaamaalaaa baGaeyOaIy7aaWbaaSqabeaacaWGRbaaaOGaaGikaiabes7aKjaadw hacaaIPaaabaGaeyOaIyRaamiEamaaCaaaleqabaGaam4AaaaaaaGc caaIPaWaaWbaaSqabeaacaaMb8UaaGOmaaaakiaadsgacaWG4bGaaG jcVlaadsgacaWG0bGaeyizImQaeqiUde3aa8qCaeqaleaacaaIWaaa baGaamivaaqdcqGHRiI8aOWaa8qCaeqaleaacaaIWaaabaGaamiBaa qdcqGHRiI8aOGaamiAamaaCaaaleqabaGaaGOmaaaakiaaiIcacaWG 4bGaaGilaiaadshacaaIPaGaaGjcVlaadsgacaWG4bGaaGjcVlaads gacaWG0bGaaGilaaaa@86A4@     (37)

где θ=T e T σ l max k C k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH4oqCcaaI9aGaamivaiaadwgada ahaaWcbeqaaiaadsfaaaGccqaHdpWCdaWgaaWcbaGaamiBaaqabaGc daqfqaqabSqaaiaadUgaaeqakeaaciGGTbGaaiyyaiaacIhaaaGaam 4qamaaBaaaleaacaWGRbaabeaaaaa@3FE2@ . Подставив в формулу (27) оценки (36) и (37), получим утверждение теоремы.

Теперь применим полученные результаты и выпишем градиенты и сопряжённые смешанные задачи для некоторых рассмотренных ранее примеров. Задачи в примерах 1-7 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@  являются однородными, поэтому имеет место равенство

  δ J L 1 2n = 0 l 0 τ ψ(x,t)h(x,t)dtdx, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH0oazcaWGkbWaaSbaaSqaaiaadY eadaqhaaqaaiaaigdaaeaacaaIYaGaamOBaaaaaeqaaOGaaGypamaa pehabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakmaapehabeWcba GaaGimaaqaaiabes8a0bqdcqGHRiI8aOGaeqiYdKNaaGikaiaadIha caaISaGaamiDaiaaiMcacaWGObGaaGikaiaadIhacaaISaGaamiDai aaiMcacaaMi8UaamizaiaadshacaaMi8UaamizaiaadIhacaaISaaa aa@541A@

где ψ(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHipqEcaaIOaGaamiEaiaaiYcaca WG0bGaaGykaaaa@379C@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  решение сопряжённой начально-краевой задачи.

Для примеров MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@  в силу формулы (31) уравнение для сопряжённой функции совпадет с исходным уравнением, краевые условия также совпадут, а начальные условия будут определяться формулами (28). Отметим, что данные факты согласуются с известными результатами [6].

Для примеров , ситуация иная: краевые и начальные условия не меняются, но сопряжённое уравнение изменит свой вид. Отметим, что задачи управления колебаниями движущихся материалов рассматривались в работах разных исследователей, например, можно обратить внимание на обзор [11]. Для уравнения колебаний движущейся струны (4) имеем

δu 2 ψ t 2 + v 0 2 c 2 2 ψ x 2 +2 v 0 ψ 2 (δu) xt =0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH0oazcaWG1bWaaeWaaeaadaWcaa qaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiabeI8a5bqaaiabgkGi 2kaadshadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaeWaaeaaca WG2bWaa0baaSqaaiaaicdaaeaacaaIYaaaaOGaeyOeI0Iaam4yamaa CaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaamaalaaabaGaeyOaIy 7aaWbaaSqabeaacaaIYaaaaOGaeqiYdKhabaGaeyOaIyRaamiEamaa CaaaleqabaGaaGOmaaaaaaaakiaawIcacaGLPaaacqGHRaWkcaaIYa GaamODamaaBaaaleaacaaIWaaabeaakiabeI8a5naalaaabaGaeyOa Iy7aaWbaaSqabeaacaaIYaaaaOGaaGikaiabes7aKjaadwhacaaIPa aabaGaeyOaIyRaamiEaiabgkGi2kaadshaaaGaaGypaiaaicdacaaI Saaaaa@5F93@

здесь функция δu(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH0oazcaWG1bGaaGikaiaadIhaca aISaGaamiDaiaaiMcaaaa@386D@  удовлетворяет начальным условиям (25) и уравнению (31):

2 (δu) t 2 +2 v 0 2 (δu) xt +( v 0 2 c 2 ) 2 (δu) x 2 =h(x,t). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiaaiIcacqaH0oazcaWG1bGaaGykaaqaaiabgkGi2kaa dshadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSIaaGOmaiaadAhada WgaaWcbaGaaGimaaqabaGcdaWcaaqaaiabgkGi2oaaCaaaleqabaGa aGOmaaaakiaaiIcacqaH0oazcaWG1bGaaGykaaqaaiabgkGi2kaadI hacqGHciITcaWG0baaaiabgUcaRiaaiIcacaWG2bWaa0baaSqaaiaa icdaaeaacaaIYaaaaOGaeyOeI0Iaam4yamaaCaaaleqabaGaaGOmaa aakiaaiMcadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaa iIcacqaH0oazcaWG1bGaaGykaaqaaiabgkGi2kaadIhadaahaaWcbe qaaiaaikdaaaaaaOGaaGypaiaadIgacaaIOaGaamiEaiaaiYcacaWG 0bGaaGykaiaai6caaaa@622B@

Для уравнения колебаний движущегося полотна (5) имеем

δu( 2 ψ t 2 +( v 0 2 c 2 ) 2 ψ x 2 + D m 4 ψ x 4 )+2 v 0 ψ 2 (δu) xt =0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH0oazcaWG1bGaaGikamaalaaaba GaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaeqiYdKhabaGaeyOaIyRa amiDamaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWkcaaIOaGaamODam aaDaaaleaacaaIWaaabaGaaGOmaaaakiabgkHiTiaadogadaahaaWc beqaaiaaikdaaaGccaaIPaWaaSaaaeaacqGHciITdaahaaWcbeqaai aaikdaaaGccqaHipqEaeaacqGHciITcaWG4bWaaWbaaSqabeaacaaI YaaaaaaakiabgUcaRmaalaaabaGaamiraaqaaiaad2gaaaWaaSaaae aacqGHciITdaahaaWcbeqaaiaaisdaaaGccqaHipqEaeaacqGHciIT caWG4bWaaWbaaSqabeaacaaI0aaaaaaakiaaiMcacqGHRaWkcaaIYa GaamODamaaBaaaleaacaaIWaaabeaakiabeI8a5naalaaabaGaeyOa Iy7aaWbaaSqabeaacaaIYaaaaOGaaGikaiabes7aKjaadwhacaaIPa aabaGaeyOaIyRaamiEaiabgkGi2kaadshaaaGaaGypaiaaicdacaaI Saaaaa@6989@

здесь функция δu(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH0oazcaWG1bGaaGikaiaadIhaca aISaGaamiDaiaaiMcaaaa@386D@  удовлетворяет начальным условиям (25) и уравнению (31):

2 δu t 2 +2 v 0 2 δu xt + v 0 2 c 2 2 δu x 2 + D m 4 δu x 4 =h(x,t). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiabes7aKjaadwhaaeaacqGHciITcaWG0bWaaWbaaSqa beaacaaIYaaaaaaakiabgUcaRiaaikdacaWG2bWaaSbaaSqaaiaaic daaeqaaOWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccqaH 0oazcaWG1baabaGaeyOaIyRaamiEaiabgkGi2kaadshaaaGaey4kaS YaaeWaaeaacaWG2bWaa0baaSqaaiaaicdaaeaacaaIYaaaaOGaeyOe I0Iaam4yamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaamaala aabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaeqiTdqMaamyDaaqa aiabgkGi2kaadIhadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaS aaaeaacaWGebaabaGaamyBaaaadaWcaaqaaiabgkGi2oaaCaaaleqa baGaaGinaaaakiabes7aKjaadwhaaeaacqGHciITcaWG4bWaaWbaaS qabeaacaaI0aaaaaaakiaai2dacaWGObGaaGikaiaadIhacaaISaGa amiDaiaaiMcacaaIUaaaaa@692F@

Замечание. Для уравнения колебаний движущегося вязкоупругого полотна (6) полученные результаты неприменимы, так как оператор L32n/x для этого уравнения не является симметричным.

Конфликт интересов

Автор данной работы заявляет, что у него нет конфликта интересов.

×

About the authors

A. M. Romanenkov

Moscow Avaition Institute; Research Center “Informatics and Control” of RAS

Author for correspondence.
Email: romanaleks@gmail.com
Russian Federation, Moscow; Moscow

References

  1. Hyperbolic models arising in the theory of longitudinal vibration of elastic bars / I. Fedotov, J. Marais, M. Shatalovand, H.M. Tenkam // The Australian J. of Math. Anal. and Appl. — 2011. — V. 7, № 2. — P. 1–18.
  2. Abdulazeez, S.T. Solutions of fractional order pseudo-hyperbolic telegraph partial differential equations using finite difference method / S.T. Abdulazeez, M. Modanli // Alexandria Engineering J. — 2022. — V. 61, № 12. — P. 12443–12451.
  3. Abdulazeez, S.T. Numerical scheme methods for solving nonlinear pseudo-hyperbolic partial differential equations / S.T. Abdulazeez, M. Modanli, A.M. Husien // J. of Appl. Math. and Comput. Mech. — 2022. — V. 4, № 21. — P. 5–15.
  4. Zhao, Z. A continuous Galerkin method for pseudo-hyperbolic equations with variable coefficients / Z. Zhao, H. Li // J. of Math. Anal. and Appl. — 2019. — V. 473, № 2. — P. 1053–1072.
  5. Evans, L.C. Partial Differential Equations / L.C. Evans. — Berkeley: American Mathematical Society, 2010.
  6. Vasil’ev, F.P. Optimization Methods: a textbook / F.P. Vasil’ev. Moscow: MCCME, 2011. — 434 p.
  7. Rudakov, I.A. Oscillation problem for an I-beam with fixed and hinged end supports / I.A. Rudakov // Herald of the Bauman Moscow State Technical University. Series Natural Sciences. — 2019. — № 3. — P. 4–21.
  8. Kerefov, M.A. Numerical-analytical method for solving boundary value problem for the generalized moisture transport equation / M.A. Kerefov, S.H. Gekkieva // Vestn. Udmurtskogo un-ta. Matem. Mekh. Komp’yut. nauki. — 2021. — V. 31, № 2. — P. 19–34.
  9. Mechanics of Moving Materials / Banichuk N., Jeronen J., Neittaanäki P. [et al.]. — Springer, 2014.
  10. Samarskij, A.A. Vychislitel’naya teploperedacha / A.A. Samarskij, P.N. Vabishchevich. Moscow: URSS, 2020. — 784 p.
  11. Hong, K.-S. Control of axially moving systems / K.-S. Hong, P.-T. Pham // A Review. Int. J. Control Autom. Syst. — 2019. — V. 17. — P. 2983–3008.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».