One-Dimensional Inverse Problem for Nonlinear Equations of Electrodynamics

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For the system of nonlinear electrodynamics equations, we consider the problem of determining the medium conductivity coefficient multiplying the nonlinearity. It is assumed that the permittivity and permeability are constant and the conductivity depends only on one spatial variable, with this conductivity being zero on the half-line x . For a mode in which only two electromagnetic field components participate, the wave propagation process caused by the incidence of a plane wave with a constant amplitude from the domain x<0  onto an inhomogeneity localized on the half-line x<0  is considered. With a given conductivity coefficient, the conditions for the solvability of the direct problem and the properties of its solution are studied. To solve the inverse problem, the trace of the electrical component of the solution of the direct problem is specified on a finite segment of the axis x=0. A theorem on the local existence and uniqueness of the solution of the inverse problem is established, and a global estimate of the conditional stability of its solutions is found.

About the authors

V. G Romanov

Sobolev Institute of Mathematics, Novosibirsk, 630090, Russia

Author for correspondence.
Email: romanov@math.nsc.ru

References

  1. Piskin E. On the decay and blow up of solutions for quasilinear hyperbolic equations with nonlinear damping and source terms // Boundary Value Problems. 2015. Art. 127.
  2. Messaoudi S.A., Talahmeh A.A. On wave equation: review and recent results // Arab. J. Math. 2018. V. 7. P. 113-145.
  3. Ogbiyele P.A., Arawomo P.O. Existence and blow-up time estimate for a negative initial energy solution of a nonlinear Cauchy problem // Acta Appl. Math. 2020. V. 170. P. 443-458.
  4. Kurylev Y., Lassas M., Uhlmann G. Inverse problems for Lorentzian manifolds and non-linear hyperbolic equations // Invent. Math. 2018. V. 212. P. 781-857.
  5. Lassas M., Uhlmann G., Wang Y. Inverse problems for semilinear wave equations on Lorentzian manifolds // Commun. Math. Phys. 2018. V. 360. P. 555-609.
  6. Lassas M. Inverse problems for linear and non-linear hyperbolic equations // Proc. Intern. Congress Math. 2018. V. 3. P. 3739-3760.
  7. Hintz P., Uhlmann G. Reconstruction of Lorentzian manifolds from boundary light observation sets // Int. Math. Res. Notices. 2019. V. 22. P. 6949-6987.
  8. Hintz P., Uhlmann G., Zhai J. An inverse boundary value problem for a semilinear wave equation on Lorentzian manifolds // Int. Math. Res. Notices. 2022. V. 17. P. 13181-13211.
  9. Hintz P., Uhlmann G., Zhai J. The Dirichlet-to-Neumann map for a semilinear wave equation on Lorentzian manifolds // arXiv:2103.08110v1 [math.AP]. 15 Mar. 2021.
  10. Barreto A.S. Interactions of semilinear progressing waves in two or more space dimensions // Inverse Probl. Imaging. 2020. V. 14. № 6. P. 1057-1105.
  11. Barreto A.S., Stefanov P. Recovery of a general nonlinearity in the semilinear wave equation // arXiv:2107.08513v1 [math.AP]. 18 Jul. 2021.
  12. Wang Y., Zhou T. Inverse problems for quadratic derivative nonlinear wave equations // Commun. Partial Differ. Equat. 2019. V. 44. № 11. P. 1140-1158.
  13. Barreto A.S., Stefanov P. Recovery of a cubic non-linearity in the wave equation in the weakly nonlinear regime // Commun. Math. Phys. 2022. V. 392. P. 25-53.
  14. Uhlmann G., Zhai J. On an inverse boundary value problem for a nonlinear elastic wave equation // J. Math. Pure Appl. 2021. V. 153. P. 114-136.
  15. Романов В.Г., Бугуева Т.В. Обратная задача для нелинейного волнового уравнения // Сиб. журн. индустр. математики. 2022. Т. 25. № 2. С. 83-100.
  16. Романов В.Г., Бугуева Т.В. Задача об определении коэффициента при нелинейном члене квазилинейного волнового уравнения // Сиб. журн. индустр. математики. 2022. Т. 25. № 3. С. 154-169.
  17. Романов В.Г., Бугуева Т.В. Обратная задача для волнового уравнения с полиномиальной нелинейностью // Сиб. журн. индустр. математики. 2023. Т. 26. № 1. C. 142-149.
  18. Романов В.Г. Обратная задача для полулинейного волнового уравнения // Докл. РАН. 2022. Т. 504. № 1. С. 36-41.
  19. Романов В.Г. Обратная задача для уравнений электродинамики с нелинейной проводимостью // Докл. РАН. 2023. Т. 509. № 1. С. 65-68.
  20. Беккенбах Э., Беллман Р. Неравенства. М., 1965.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies