A Numerical Method for the Optimization of the Diffraction Efficiency of Thin-Layer Coatings with Diffraction Gratings

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A method is proposed for optimizing the diffraction efficiency of multilayer dielectric gratings in the problem of spectral addition of signals in a wide range of wavelengths. From a physical point of view, we pose a direct problem of electromagnetic wave diffraction on multilayer dielectric gratings for the solution of which a modified method of separation of variables is applied. To optimize the diffraction efficiency, a gradient method with a constant step is used, while the gradient is calculated analytically. Numerical results are presented

About the authors

V. Yu Martynova

Penza State University, Penza, 440026, Russia

Email: lynxbax@mail.ru

Yu. G Smirnov

Penza State University, Penza, 440026, Russia

Email: smirnovyug@mail.ru

A. V Tikhonravov

Lomonosov Moscow State University, Moscow, 119991, Russia

Author for correspondence.
Email: tikh@srcc.msu.ru

References

  1. Nguyen H.T., Britten J.A., Carlson T.C., Nissen J.D., Summers L.J., Hoaglan C.R., Aasen M.D., Peterson J.E., Jovanovic I. Gratings for high-energy petawatt-class lasers // Proc. Of SPIE. 2005. V. 5991. P. 59911M.
  2. Zheng Y., Yang Y., Wang J. et al. 10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation // Optics Express. 2016. V. 24. № 11. P. 12063-12071.
  3. Smith D.J., McCullough M., Xu B. et al. Large area pulse compression gratings fabricated onto fused silica substrates using scanning beam interference lithography // 3rd Intern. Conf. Ultrahigh Intens. Lasers: Dev. Sci. Emerg. Appl. 2008.
  4. Rumpel M., Moeller M., Moormann C., Graf T., Ahmed M.A. Broadband pulse compression gratings with measured 99.7{%} diffraction efficiency // Opt. Lett. 2014. V. 39. P. 323-326.
  5. http://www.horiba.com/scientific/products/diffraction-gratings/for-scientific-applications/laser-pulse-compression/dielectric.
  6. http://www.plymouthgrating.com/Products.
  7. www.gsolver.com.
  8. www.lighttrans.com.
  9. Moharam M.G., Grann E.B., Pommet D.A., Gaylord T.K. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings // J. of the Optical Soc. of America. A. 1995. V. 12. № 5. P. 1068-1076.
  10. Popov E. Gratings: Theory and Numeric Applications. Marseille, 2014.
  11. Smirnov Yu.G., Martynova V.Yu., Wei Zeyong, Cheng Xinbin, Tikhonravov A.V. Computationally efficient algorithm for designing multilayer dielectric gratings // Lobachevskii J. of Math. 2022. V. 43. № 5. P. 1277-1284.
  12. Smirnov Yu.G., Martynova V.Yu., Moskaleva M.A., Tikhonravov A.V. Modified method of separation of variables for solving diffraction problems on multilayer dielectric gratings // Eurasian J. of Math. and Comput. Appl. 2021. V. 9. № 4. P. 76-88.
  13. Смирнов Ю.Г., Мартынова В.Ю., Москалева М.А., Цупак А.А. Анализ дифракционной эффективности дифракционных решеток модифицированным методом разделения переменных // Изв. вузов. Поволжский регион. Физ.-мат. науки. 2021. № 4 (60). С. 57-70.
  14. Tao He, Jinlong Zhang, Hongfei Jiao, Zhanshan Wang, Xinbin Cheng. Near-infrared broadband $Si:H/SiO_2$ multilayer gratings with high tolerance to fabrication errors // Nanotechnology. 2020. V. 31. № 315203. P. 1-5.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies