K voprosu o chislennom reshenii nekonservativnykh giperbolicheskikh sistem uravneniy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Issues related to the lack of convergence in the application of formally path-conservative difference schemes for solving nonconservative hyperbolic systems of equations are numerically investigated. This problem is central in constructing well-posed difference schemes for solving this class of problems. The basic concepts of the theory of nonconservative hyperbolic systems of equations and the corresponding problems of constructing difference schemes for their solution are outlined. A variant of the HLL method is proposed that allows using an arbitrary explicitly specified path. For a model system of Burgers equations, the shock adiabates and paths corresponding to the viscous regularization of a system of a given form are explicitly calculated. The reasons for the lack of convergence of numerical solutions of exact ones in the case of incorrect application of the corresponding algorithms are analyzed. It is shown that, at least in the particular case considered, a variant of the HLL method that is formally conservative along the way gives the correct solution of the problem.

About the authors

R. R Polekhina

Keldysh Institute of Applied Mathematics

Email: Polekhina@keldysh.ru
Moscow, 125047, Russia

M. V Alekseev

Keldysh Institute of Applied Mathematics

Email: mikhail.alekseev@phystech.edu
Moscow, 125047, Russia

E. B Savenkov

Keldysh Institute of Applied Mathematics

Author for correspondence.
Email: e.savenkov@gmail.com
Moscow, 125047, Russia

References

  1. LeFloch P.G., Mohammadian M. Why many theories of shock waves are necessary: kinetic functions, equivalent equations, and fourth-order models // J. of Comput. Phys. 2008. V. 227. № 8. P. 4162-4189.
  2. Шокин Ю.И. Метод дифференциального приближения. Новосибирск, 1979.
  3. Karni S. Viscous shock profiles and primitive formulations // SIAM J. on Numer. Anal. 1992. V. 29. № 6. P. 1592-1609.
  4. Tadmor E. The numerical viscosity of entropy stable schemes for systems of conservation laws. I // Math. Comp. 1987. V. 49. P. 91-103.
  5. Tadmor E., Zhong W. Novel entropy stable schemes for 1D and 2D fluid equations // Hyperbolic Problems: Theory, Numerics, Applications. / Eds. S. Benzoni-Gavage, D. Serre. Berlin; Heidelberg, 2008.
  6. Castro M.J. et al. Entropy conservative and entropy stable schemes for nonconservative hyperbolic systems // SIAM J. on Numer. Anal. 2013. V. 51. № 3. P. 1371-1391.
  7. LeFloch P., Mishra S. Numerical methods with controlled dissipation for small-scale dependent shocks // Acta Numerica. 2014. V. 23. P. 743-816.
  8. Гельфанд И.М. Некоторые задачи теории квазилинейных уравнений // Успехи мат. наук. 1959. Т. 14. Вып. 2 (86). C. 87-158.
  9. Петровский И.Г. О проблеме Cauchy для систем линейных уравнений с частными производными в области неаналитических функций // Бюлл. Московского гос. ун-та. Cекц. А. Математика и механика. 1938. Т. 1. Вып. 7.
  10. Majda A., Pego L. Stable viscosity matrices for systems of conservation laws // J. of Differ. Equat. 1985. V. 56. № 2. P. 229-262.
  11. Вольперт А.И. Пространства $BV$ и квазилинейные уравнения // Мат. сб. 1967. Т. 73 (115). № 2. С. 255-302.
  12. LeFloch P., Liu T.-P. Existence theory for nonlinear hyperbolic systems in nonconservative form. Berlin; New York, 1993.
  13. Dal Maso G., Lefloch P.G., Murat F. Definition and weak stability of nonconservative products // J. de Math. Pur. et Appl. 1995. V. 74. № 6. P. 483-548.
  14. Colombeau J.-F. Multiplication of distributions // Bull. of the Amer. Math. Soc. 1990. V. 23. № 2. P. 251-268.
  15. Alouges F., Merlet B. Approximate shock curves for non-conservative hyperbolic systems in one space dimension // J. of Hyperbolic Differ. Equat. 2004. V. 1. № 4. P. 769-788.
  16. Lax P. Hyperbolic systems of conservation laws and the mathematical theory of shock waves // CBMS-NSF Regional Conference Series in Applied Mathematics. V. 11. SIAM, 1973.
  17. Baer M.R., Nunziato J.W. A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials // Int. J. of Multiphase Flow. 1986. V. 2. № 6. P. 861-889.
  18. Toumi I. A weak formulation of Roe's approximate Riemann solver // J. of Comput. Phys. 1992. V. 102. № 2. P. 360-373.
  19. Dumbser M., Balsara D.S. A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems // J. of Comput. Phys. 2016. V. 304. P. 275-319.
  20. Par'es C. Numerical methods for nonconservative hyperbolic systems: atheoretical framework // SIAM J. on Numer. Anal. 2006. V. 44. № 1. P. 300-321.
  21. Berthon C. Sch'ema nonlin'eaire pour l'approximation num'erique d'un syst'eme hyperbolique non conservatif // Comptes Rendus Mathematique. 2002. V. 335. № 12. P. 1069-1072.
  22. Куликовский А.Г., Свешникова Е.И. Нелинейные волны в упругих средах. М., 1998.
  23. Pimentel-Garc'ia E., Castro M.J., Chalons C., de Luna T.M., Par'es C. In-cell discontinuous reconstruction path-conservative methods for non conservative hyperbolic systems-Second-order extension // J. of Comput. Phys. 2022. V. 459. P. 111152.
  24. Chalons C. Path-conservative in-cell discontinuous reconstruction schemes for non conservative hyperbolic systems // Commun. Math. Sci. 2020. V. 18. № 1. P. 1-30.
  25. Polekhina R.R., Korneev B.A., Savenkov E.B. Numerical study of multiphase hyperbolic models // J. of Comput. and Appl. Math. 2023. V. 423. P. 114925.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies