Effect of Disorder on Magnetotransport in Semiconductor Artificial Graphene

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Magnetotransport in mesoscopic samples with semiconductor artificial graphene has been simulated within the Landauer–Büttiker formalism. Model four-terminal systems in a high-mobility two-dimensional electron gas have a square shape with a side of 3–5 μm, which is filled with a short-period (120 nm) weakly disordered triangular lattice of antidots at the modulation amplitude of the electrostatic potential comparable with the Fermi energy. It has been found that the Hall resistance 
 in the magnetic field range of B = 10–50 mT has a hole plateau 
, where R0 = h/2e2 = 12.9 kΩ, at carrier densities in the lattice below the Dirac point n < n1D and an electron plateau 
 at n > n1D. Enhanced disorder destroys the plateaus, but a carrier type (electrons or holes) holds. Long-range disorder at low magnetic fields suppresses quantized resistance plateaus much more efficiently than short-range disorder.

Sobre autores

O. Tkachenko

Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences

Email: otkach@isp.nsc.ru
630090, Novosibirsk, Russia

V. Tkachenko

Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University

Email: otkach@isp.nsc.ru
630090, Novosibirsk, Russia; 630090, Novosibirsk, Russia

D. Baksheev

Novosibirsk State University

Email: otkach@isp.nsc.ru
630090, Novosibirsk, Russia

O. Sushkov

School of Physics, University of New South Wales

Autor responsável pela correspondência
Email: otkach@isp.nsc.ru
2052, Sydney, Australia

Bibliografia

  1. D.Q. Wang, D. Reuter, A.D. Wieck, A.R. Hamilton, and O. Klochan, Appl. Phys. Lett. 117, 032102 (2020).
  2. O.A. Tkachenko, V.A. Tkachenko, I. S. Terekhov, and O.P. Sushkov, 2D Mater. 2, 014010 (2015).
  3. Y. Hatsugai, T. Fukui, and H. Aoki, Phys. Rev. B 74, 205414 (2006).
  4. Y. Zheng and T. Ando, Phys. Rev. B 65, 245420 (2002).
  5. O.A. Tkachenko and V.A. Tkachenko, JETP Lett. 99, 204 (2014).
  6. O.A. Tkachenko, V.A. Tkachenko, D.G. Baksheev, and O.P. Sushkov, JETP Lett. 116, 616 (2022).
  7. L. N'advorn'ık, M. Orlita, N.A. Goncharuk, L. Smr˘cka, V. Nov'ak, V. Jurka, K. Hru˘ska, Z. V'yborn'y, Z.R. Wasilewski, M. Potemski, and K. V'yborn'y, New J. Phys. 14, 053002 (2012).
  8. C.W. Groth, M. Wimmer, A.R. Akhmerov, and X. Waintal, New J. Phys. 16, 063065 (2014).
  9. M. B¨uttiker, Phys. Rev. Lett. 57, 1761 (1986).

Declaração de direitos autorais © Российская академия наук, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies