Jet quenching for hadron-tagged jets in pA collisions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We calculate the medium modification factor IpA for 5.02 TeV p+Pb collisions. We use the Monte-Carlo Glauber model to determine the parameters of the quark-gluon plasma fireball in pA jet events. Our calculations show that the jet quenching effect for IpA turns out to be rather small. We have found that the theoretical IpA as a function of the underlying event charged multiplicity density, within errors, agrees with data from ALICE [18] for 5.02TeV p+Pb collisions. However, the experimental errors are too large to draw a firm conclusion on the possible presence of jet quenching.

About the authors

B. G Zakharov

L.D. Landau Institute for Theoretical Physics

Author for correspondence.
Email: bgz@itp.ac.ru
Moscow, Russia

References

  1. E.V. Shuryak, Phys. Lett. B 78, 150 (1978).
  2. P.M. Chesler, JHEP 03, 146 (2016); arXiv:1601.01583.
  3. M. Spalinski, Phys. Rev. D 94, 085002 (2016); arXiv:1607.06381.
  4. P. Romatschke, Eur. Phys. J. C 77, 21 (2017); arXiv:1609.02820.
  5. G. Aad et al. (ATLAS Collaboration), Phys. Rev. Lett. 110, 182302 (2013); arXiv:1212.5198.
  6. B. Abelev et al. (ALICE Collaboration), Phys. Lett. B 719, 29 (2013); arXiv:1212.2001.
  7. V. Khachatryan et al. (CMS Collaboration), JHEP 1009, 091 (2010); arXiv:1009.4122.
  8. G. Aad et al. (ATLAS Collaboration), Phys. Rev. Lett. 116, 172301 (2016); arXiv:1509.04776.
  9. J. Adam et al. (ALICE Collaboration), Nature Phys. 13, 535 (2017); arXiv:1606.07424.
  10. R. Campanini, G. Ferri, and G. Ferri, Phys. Lett. B 703, 237 (2011); arXiv:1106.2008.
  11. L. van Hove, Phys. Lett. B 118, 138 (1982).
  12. A. Kovner and M. Lublinsky, Int. J. Mod. Phys. E 22, 1330001 (2013); arXiv:1211.1928.
  13. A. Dumitru, L. McLerran, and V. Skokov, Phys. Lett. B 743, 134 (2015); arXiv:1410.4844.
  14. K. Dusling and R. Venugopalan, Phys. Rev. D 87, 094034 (2013); arXiv:1302.7018.
  15. R. Field, Acta Phys. Polon. B 42, 2631 (2011); arXiv:1110.5530.
  16. B.G. Zakharov, Phys. Rev. Lett. 112, 032301 (2014); arXiv:1307.3674.
  17. S. Tripathy (for ALICE Collaboration), in 24th DAEBRNS High Energy Physics Symposium, 14–18 December 2020, Jatni, India; arXiv:2103.07218.
  18. S. Acharya et al. (ALICE Collaboration), Phys. Lett. B 843, 137649 (2023); arXiv:2204.10157.
  19. B.G. Zakharov, JETP Lett. 116, 347 (2022); arXiv:2208.10339.
  20. B.G. Zakharov, JETP Lett. 63, 952 (1996); hep-ph/9607440.
  21. B.G. Zakharov, Nucl. Phys. B Proc. Suppl. 146, 151 (2005); hep-ph/0412117.
  22. B.G. Zakharov, JETP Lett. 80, 617 (2004); hep-ph/0410321.
  23. B.G. Zakharov, JETP Lett. 88, 781 (2008); arXiv:0811.0445.
  24. K. Werner, Phys. Rev. Lett. 98, 152301 (2007); arXiv:0704.1270.
  25. B.G. Zakharov, JETP 124, 860 (2017); arXiv:1611.05825.
  26. A. Bazavov et al., Phys. Rev. D 98, 054511 (2018) arXiv:1804.10600.

Copyright (c) 2024 Российская академия наук

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies