Jet quenching for hadron-tagged jets in pA collisions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We calculate the medium modification factor IpA for 5.02 TeV p+Pb collisions. We use the Monte-Carlo Glauber model to determine the parameters of the quark-gluon plasma fireball in pA jet events. Our calculations show that the jet quenching effect for IpA turns out to be rather small. We have found that the theoretical IpA as a function of the underlying event charged multiplicity density, within errors, agrees with data from ALICE [18] for 5.02TeV p+Pb collisions. However, the experimental errors are too large to draw a firm conclusion on the possible presence of jet quenching.

Sobre autores

B. Zakharov

L.D. Landau Institute for Theoretical Physics

Autor responsável pela correspondência
Email: bgz@itp.ac.ru
Moscow, Russia

Bibliografia

  1. E.V. Shuryak, Phys. Lett. B 78, 150 (1978).
  2. P.M. Chesler, JHEP 03, 146 (2016); arXiv:1601.01583.
  3. M. Spalinski, Phys. Rev. D 94, 085002 (2016); arXiv:1607.06381.
  4. P. Romatschke, Eur. Phys. J. C 77, 21 (2017); arXiv:1609.02820.
  5. G. Aad et al. (ATLAS Collaboration), Phys. Rev. Lett. 110, 182302 (2013); arXiv:1212.5198.
  6. B. Abelev et al. (ALICE Collaboration), Phys. Lett. B 719, 29 (2013); arXiv:1212.2001.
  7. V. Khachatryan et al. (CMS Collaboration), JHEP 1009, 091 (2010); arXiv:1009.4122.
  8. G. Aad et al. (ATLAS Collaboration), Phys. Rev. Lett. 116, 172301 (2016); arXiv:1509.04776.
  9. J. Adam et al. (ALICE Collaboration), Nature Phys. 13, 535 (2017); arXiv:1606.07424.
  10. R. Campanini, G. Ferri, and G. Ferri, Phys. Lett. B 703, 237 (2011); arXiv:1106.2008.
  11. L. van Hove, Phys. Lett. B 118, 138 (1982).
  12. A. Kovner and M. Lublinsky, Int. J. Mod. Phys. E 22, 1330001 (2013); arXiv:1211.1928.
  13. A. Dumitru, L. McLerran, and V. Skokov, Phys. Lett. B 743, 134 (2015); arXiv:1410.4844.
  14. K. Dusling and R. Venugopalan, Phys. Rev. D 87, 094034 (2013); arXiv:1302.7018.
  15. R. Field, Acta Phys. Polon. B 42, 2631 (2011); arXiv:1110.5530.
  16. B.G. Zakharov, Phys. Rev. Lett. 112, 032301 (2014); arXiv:1307.3674.
  17. S. Tripathy (for ALICE Collaboration), in 24th DAEBRNS High Energy Physics Symposium, 14–18 December 2020, Jatni, India; arXiv:2103.07218.
  18. S. Acharya et al. (ALICE Collaboration), Phys. Lett. B 843, 137649 (2023); arXiv:2204.10157.
  19. B.G. Zakharov, JETP Lett. 116, 347 (2022); arXiv:2208.10339.
  20. B.G. Zakharov, JETP Lett. 63, 952 (1996); hep-ph/9607440.
  21. B.G. Zakharov, Nucl. Phys. B Proc. Suppl. 146, 151 (2005); hep-ph/0412117.
  22. B.G. Zakharov, JETP Lett. 80, 617 (2004); hep-ph/0410321.
  23. B.G. Zakharov, JETP Lett. 88, 781 (2008); arXiv:0811.0445.
  24. K. Werner, Phys. Rev. Lett. 98, 152301 (2007); arXiv:0704.1270.
  25. B.G. Zakharov, JETP 124, 860 (2017); arXiv:1611.05825.
  26. A. Bazavov et al., Phys. Rev. D 98, 054511 (2018) arXiv:1804.10600.

Declaração de direitos autorais © Российская академия наук, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies